清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Design of Biopharmaceutical Formulations Accelerated by Machine Learning

生物制药 背景(考古学) 贝叶斯优化 计算机科学 理论(学习稳定性) 数学优化 机器学习 数学 遗传学 生物 古生物学
作者
Harini Narayanan,Fabian Dingfelder,Itzel Condado Morales,Bhargav Patel,Kristine Enemærke Heding,Jais Rose Bjelke,Thomas Egebjerg,Alessandro Butté,Michael Sokolov,Nikolai Lorenzen,Paolo Arosio
出处
期刊:Molecular Pharmaceutics [American Chemical Society]
卷期号:18 (10): 3843-3853 被引量:63
标识
DOI:10.1021/acs.molpharmaceut.1c00469
摘要

In addition to activity, successful biological drugs must exhibit a series of suitable developability properties, which depend on both protein sequence and buffer composition. In the context of this high-dimensional optimization problem, advanced algorithms from the domain of machine learning are highly beneficial in complementing analytical screening and rational design. Here, we propose a Bayesian optimization algorithm to accelerate the design of biopharmaceutical formulations. We demonstrate the power of this approach by identifying the formulation that optimizes the thermal stability of three tandem single-chain Fv variants within 25 experiments, a number which is less than one-third of the experiments that would be required by a classical DoE method and several orders of magnitude smaller compared to detailed experimental analysis of full combinatorial space. We further show the advantage of this method over conventional approaches to efficiently transfer historical information as prior knowledge for the development of new biologics or when new buffer agents are available. Moreover, we highlight the benefit of our technique in engineering multiple biophysical properties by simultaneously optimizing both thermal and interface stabilities. This optimization minimizes the amount of surfactant in the formulation, which is important to decrease the risks associated with corresponding degradation processes. Overall, this method can provide high speed of converging to optimal conditions, the ability to transfer prior knowledge, and the identification of new nonlinear combinations of excipients. We envision that these features can lead to a considerable acceleration in formulation design and to parallelization of operations during drug development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
发个15分的完成签到 ,获得积分10
2秒前
yznfly应助Kevin采纳,获得30
24秒前
25秒前
samuel完成签到,获得积分10
28秒前
KKIII发布了新的文献求助10
30秒前
apt完成签到 ,获得积分10
37秒前
ramsey33完成签到 ,获得积分10
37秒前
活泼的大船完成签到,获得积分10
38秒前
共享精神应助科研通管家采纳,获得10
44秒前
科研通AI2S应助科研通管家采纳,获得10
44秒前
科研通AI2S应助科研通管家采纳,获得10
44秒前
Kimen完成签到,获得积分10
53秒前
CAOHOU应助sailingluwl采纳,获得50
58秒前
Sandy应助王贺帅采纳,获得100
1分钟前
1分钟前
1分钟前
胡33发布了新的文献求助10
1分钟前
1分钟前
lulu123发布了新的文献求助10
1分钟前
科研通AI5应助胡33采纳,获得10
1分钟前
希望天下0贩的0应助lulu123采纳,获得10
1分钟前
dreamwalk完成签到 ,获得积分10
1分钟前
1分钟前
晟sheng完成签到 ,获得积分10
1分钟前
传奇完成签到 ,获得积分0
1分钟前
蒲蒲完成签到 ,获得积分10
1分钟前
可爱的函函应助KKIII采纳,获得10
1分钟前
CherylZhao完成签到,获得积分10
1分钟前
1分钟前
hyl-tcm完成签到 ,获得积分10
1分钟前
Miya完成签到 ,获得积分10
2分钟前
GGBond完成签到 ,获得积分10
2分钟前
大魔王完成签到 ,获得积分10
2分钟前
2分钟前
AiQi完成签到 ,获得积分10
2分钟前
KKIII发布了新的文献求助10
2分钟前
文献求助完成签到,获得积分10
2分钟前
ferritin完成签到 ,获得积分10
2分钟前
陈好好完成签到 ,获得积分10
2分钟前
liang完成签到 ,获得积分10
2分钟前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
Comparison analysis of Apple face ID in iPad Pro 13” with first use of metasurfaces for diffraction vs. iPhone 16 Pro 500
Towards a $2B optical metasurfaces opportunity by 2029: a cornerstone for augmented reality, an incremental innovation for imaging (YINTR24441) 500
Materials for Green Hydrogen Production 2026-2036: Technologies, Players, Forecasts 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4054299
求助须知:如何正确求助?哪些是违规求助? 3592219
关于积分的说明 11413955
捐赠科研通 3318351
什么是DOI,文献DOI怎么找? 1825023
邀请新用户注册赠送积分活动 896271
科研通“疑难数据库(出版商)”最低求助积分说明 817418