限制等距性
数学
缩小
常量(计算机编程)
基质(化学分析)
等距(黎曼几何)
组合数学
稀疏逼近
应用数学
纯数学
算法
压缩传感
计算机科学
数学优化
复合材料
材料科学
程序设计语言
作者
Ning Bi,Jun Tan,Wai-Shing Tang
标识
DOI:10.1142/s0219530521500068
摘要
In this paper, we provide a necessary condition and a sufficient condition such that any [Formula: see text]-sparse vector [Formula: see text] can be recovered from [Formula: see text] via [Formula: see text] local minimization. Moreover, we further verify that the sufficient condition is naturally valid when the restricted isometry constant of the measurement matrix [Formula: see text] satisfies [Formula: see text]. Compared with the existing [Formula: see text] local recoverability condition [Formula: see text], this result shows that [Formula: see text] local recoverability contains more measurement matrices.
科研通智能强力驱动
Strongly Powered by AbleSci AI