N6-Methyladenosine-Related RNA Signature Predicting the Prognosis of Ovarian Cancer

卵巢癌 基因 N6-甲基腺苷 基因签名 癌症研究 比例危险模型 甲基化 核糖核酸 癌症 生物 肿瘤科 生物信息学 基因表达 小RNA 遗传学 医学 内科学 甲基转移酶
作者
Jiao Jiao,Longyang Jiang,Yang Luo
出处
期刊:Recent Patents on Anti-cancer Drug Discovery [Bentham Science Publishers]
卷期号:16 (3): 407-416 被引量:11
标识
DOI:10.2174/1574892816666210615164645
摘要

N6-Methyladenosine (m6A) RNA methylation is the most universal mRNA modification in eukaryotic cells. M6A mRNA modification affects almost every phases of RNA processing, including splicing, decay, export, translation and expression. Several patents have reported the application of m6A mRNA modification in cancer diagnosis and treatment. Ovarian cancer is the leading cause of death among all gynecological cancers. It is urgent to identify new biomarkers for early diagnosis and prognosis of ovarian cancer.In the current study, we aimed to evaluate the m6A RNA methylation regulators and m6A related genes and establish a new gene signature panel for the prognosis of ovarian cancer.We downloaded the mutations data, FPKM data and corresponding clinical information of 373 patients with Ovarian Cancer (OC) from the TCGA database. We performed LASSO regression analysis and multivariate cox regression analysis to develop a risk-identifying gene signature panel.A total of 317 candidate m6A RNA methylation related genes were obtained. Finally, 12 - genes (WTAP, LGR6, ZC2HC1A, SLC4A8, AP2A1, NRAS, CUX1, HDAC1, CD79A, ACE2, FLG2 and LRFN1) were selected to establish the signature panel. We analyzed the genetic alterations of the selected 12 -genes in OC using cBioPortal database. Among the 373 patients, 368 patients have mutations. The results showed that all queried genes were altered in 137 of 368 cases (37.23%). The 12-gene signature panel was confirmed as an independent prognostic indicator (P =2.29E-18, HR = 1.699, 95% CI = 1.508-1.913).We established an effective m6A-related gene signature panel consisted of 12 -genes, which can predict the outcome of patients with OC. The high risk score indicates unfavorable survival. Our study provided novel insights into the relationship between m6A and OC. This gene signature panel will be helpful in identifying poor prognostic patients with OC and could be a promising prognostic indicator in clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
辛勤的又夏给辛勤的又夏的求助进行了留言
5秒前
十年HLX完成签到 ,获得积分10
7秒前
克拉斯发布了新的文献求助10
10秒前
13秒前
15秒前
不知道发布了新的文献求助10
16秒前
17秒前
科研通AI2S应助研友_nqv5WZ采纳,获得10
19秒前
20秒前
xmqaq完成签到,获得积分10
20秒前
妮儿发布了新的文献求助10
23秒前
北风应助小天采纳,获得10
25秒前
充电宝应助望海潮采纳,获得10
28秒前
li发布了新的文献求助10
34秒前
FXT完成签到 ,获得积分10
36秒前
36秒前
沉醉的中国钵完成签到 ,获得积分10
38秒前
38秒前
orixero应助不如看海采纳,获得10
41秒前
42秒前
Colossus发布了新的文献求助10
43秒前
47秒前
48秒前
文昊完成签到,获得积分10
49秒前
乐观的雁兰完成签到,获得积分10
49秒前
49秒前
克拉斯完成签到,获得积分10
50秒前
51秒前
科研通AI5应助斯文的夜雪采纳,获得100
53秒前
dyh发布了新的文献求助10
54秒前
54秒前
不如看海发布了新的文献求助10
54秒前
望海潮发布了新的文献求助10
56秒前
56秒前
Jun完成签到 ,获得积分10
56秒前
1分钟前
1分钟前
英俊的铭应助LIJINGGE采纳,获得10
1分钟前
爆米花应助LIJINGGE采纳,获得10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778778
求助须知:如何正确求助?哪些是违规求助? 3324343
关于积分的说明 10218037
捐赠科研通 3039436
什么是DOI,文献DOI怎么找? 1668089
邀请新用户注册赠送积分活动 798545
科研通“疑难数据库(出版商)”最低求助积分说明 758437