Combining elemental analysis of toenails and machine learning techniques as a non-invasive diagnostic tool for the robust classification of type-2 diabetes

人工智能 2型糖尿病 机器学习 随机森林 糖尿病 接收机工作特性 计算机科学 算法 医学 数学 内分泌学
作者
Jake A. Carter,Christina S. Long,Beth P. Smith,Thomas L. Smith,George L. Donati
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:115: 245-255 被引量:42
标识
DOI:10.1016/j.eswa.2018.08.002
摘要

Described for the first time is the use of elemental analysis of diabetic toenails and machine learning techniques for the robust classification of type-2 diabetes. Aluminum, Cs, Ni, V and Zn concentrations in toenails were found to be significantly (p < 0.05) different between healthy volunteers and type-2 diabetes patients. Seven different machine learning algorithms were then studied to develop a non-invasive diagnostic method using concentrations of twenty-two elements in toenails, and personal information such as age, gender and smoking history as features. Models were enhanced through feature selection and two different ensembling strategies. The performance of forty-six distinct machine learning models were compared on resampled training data and testing data. A random forest model, trained with concentrations of Al, Ba, Ca, Cr, Cs, Cu, Fe, Mg, Mn, Ni, P, Pb, Rb, S, Sb, Se, Sn, Sr, V and Zn (µg g−1), as well as information on age, gender and smoking history, had an area under the receiver operating characteristic curve (AUC) of 0.73 on the training data, and correctly predicted seven out of nine test samples (including control and disease), with an AUC of 0.90. The results at this stage of the research prove the concept of combining elemental analysis of toenails and machine learning techniques for non-invasively diagnosing type-2 diabetes. With proper sample collection and shipping, mobility-limited patients may be able to mail toenail samples for analysis and monitor their type-2 diabetes over time. A health clinic equipped with common instrumentation, software and trained algorithms similar to those used in the present study may be able to serve a large number of patients from across the world.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
竹筏过海应助pepsi采纳,获得30
1秒前
非理性或发布了新的文献求助10
1秒前
YYY发布了新的文献求助10
2秒前
2秒前
ddddd发布了新的文献求助10
2秒前
2秒前
Hello应助ccc采纳,获得10
2秒前
2秒前
Jerry完成签到,获得积分20
2秒前
健忘的金发布了新的文献求助10
2秒前
hxx完成签到,获得积分10
2秒前
xiazixiaojie发布了新的文献求助10
2秒前
临界完成签到,获得积分10
3秒前
大个应助龙宝采纳,获得30
3秒前
1jiaaa发布了新的文献求助10
3秒前
余味应助beichuanheqi采纳,获得10
3秒前
orixero应助超人不会飞采纳,获得10
3秒前
Ava应助mmol采纳,获得10
4秒前
4秒前
宫跃然发布了新的文献求助10
5秒前
研友_VZG7GZ应助xiangxinzx采纳,获得30
5秒前
DMMM完成签到,获得积分10
5秒前
天天快乐应助儒雅鹤轩采纳,获得10
6秒前
科研通AI5应助DXXX采纳,获得30
6秒前
亦依然完成签到 ,获得积分10
6秒前
7秒前
开放以南完成签到,获得积分10
7秒前
陈隆完成签到,获得积分10
7秒前
能干宛秋发布了新的文献求助10
7秒前
阳仔完成签到,获得积分10
7秒前
whs发布了新的文献求助10
8秒前
loor发布了新的文献求助10
9秒前
yc发布了新的文献求助10
9秒前
9秒前
9秒前
47完成签到,获得积分10
10秒前
科研通AI5应助凡仔采纳,获得10
10秒前
Preseverance完成签到,获得积分10
10秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
The Healthy Socialist Life in Maoist China, 1949–1980 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3785225
求助须知:如何正确求助?哪些是违规求助? 3330781
关于积分的说明 10248184
捐赠科研通 3046175
什么是DOI,文献DOI怎么找? 1671900
邀请新用户注册赠送积分活动 800891
科研通“疑难数据库(出版商)”最低求助积分说明 759868