Segmentation of Vessels in Ultra High Frequency Ultrasound Sequences Using Contextual Memory

计算机科学 分割 人工智能 高频超声 语音识别 计算机视觉
作者
Tejas Sudharshan Mathai,Vijay S. Gorantla,John Galeotti
出处
期刊:Lecture Notes in Computer Science 被引量:4
标识
DOI:10.1007/978-3-030-32245-8_20
摘要

High resolution images provided by Ultra High Frequency Ultrasound (UHFUS) scanners permit the vessel-based measurement of the Intimal-Media Thickness (IMT) in small vessels, such as those in the hand. However, it is challenging to precisely determine vessels in UHFUS sequences due to severe speckle noise obfuscating their boundaries. Current level set-based approaches are unable to identify poorly delineated boundaries and are not robust against varying speckle noise. While recent neural network-based methods, including recurrent neural networks, have shown promise at segmenting vessel contours, they are application specific and do not generalize to datasets acquired from different scanners, such as a traditional High Frequency Ultrasound (HFUS) machine, with different scan settings. Our goal for a segmentation approach was the accurate localization of vessel contours, and generalization to new data within and across biomedical imaging modalities. In this paper, we propose a novel ultrasound vessel segmentation network (USVS-Net) architecture that assimilates features extracted at different scales using Convolutional Long Short Term Memory (ConvLSTM) and segments vessel boundaries accurately. We show the results of our approach on UHFUS and HFUS sequences. To show broader applicability beyond US, we also trained and tested our approach on a Chest X-Ray dataset. To the best of our knowledge, this is the first learning-based approach to segment deforming vessel contours in both UHFUS and HFUS sequences.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dd完成签到,获得积分10
刚刚
斯文败类应助笔芯采纳,获得10
刚刚
Narcissus153应助自信雨安采纳,获得10
1秒前
枫叶完成签到 ,获得积分10
2秒前
hxm发布了新的文献求助10
2秒前
azuzuzu发布了新的文献求助10
3秒前
123发布了新的文献求助30
3秒前
lizhiqian2024发布了新的文献求助10
3秒前
牛肉面完成签到,获得积分10
5秒前
kuan发布了新的文献求助10
7秒前
二狗儿完成签到,获得积分10
7秒前
科研通AI2S应助敏敏要低调采纳,获得10
8秒前
芒果好高完成签到,获得积分10
10秒前
陈东东完成签到,获得积分10
12秒前
顺利完成签到,获得积分10
14秒前
新手上路完成签到,获得积分10
16秒前
18秒前
壮观的丑完成签到,获得积分10
18秒前
20秒前
远看寒山完成签到,获得积分10
21秒前
z_king_d_23发布了新的文献求助10
22秒前
27秒前
善良的静曼完成签到 ,获得积分10
28秒前
hobowei完成签到 ,获得积分10
28秒前
欣喜书蕾发布了新的文献求助10
30秒前
阿姊完成签到 ,获得积分10
31秒前
星你完成签到,获得积分10
32秒前
cyia-发布了新的文献求助10
32秒前
Lucas应助石火采纳,获得10
33秒前
34秒前
Frances应助zfihead采纳,获得10
35秒前
桃小昔完成签到,获得积分20
35秒前
常乐的大宝剑完成签到,获得积分10
36秒前
越红完成签到,获得积分10
38秒前
38秒前
老鼠人发布了新的文献求助10
40秒前
李健的小迷弟应助Joyi采纳,获得10
40秒前
hxm完成签到,获得积分10
40秒前
善学以致用应助lilililili采纳,获得10
40秒前
43秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Pharmacological profile of sulodexide 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3805206
求助须知:如何正确求助?哪些是违规求助? 3350214
关于积分的说明 10347750
捐赠科研通 3066060
什么是DOI,文献DOI怎么找? 1683511
邀请新用户注册赠送积分活动 809039
科研通“疑难数据库(出版商)”最低求助积分说明 765205