Coarse-to-Fine CNN for Image Super-Resolution

计算机科学 卷积神经网络 水准点(测量) 人工智能 块(置换群论) 特征提取 编码(集合论) 图像(数学) 模式识别(心理学) 残余物 深度学习 特征(语言学) 算法 集合(抽象数据类型) 数学 哲学 语言学 程序设计语言 地理 大地测量学 几何学
作者
Chunwei Tian,Yong Xu,Wangmeng Zuo,Bob Zhang,Lunke Fei,Chia‐Wen Lin
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:23: 1489-1502 被引量:185
标识
DOI:10.1109/tmm.2020.2999182
摘要

Deep convolutional neural networks (CNNs) have been popularly adopted in image super-resolution (SR). However, deep CNNs for SR often suffer from the instability of training, resulting in poor image SR performance. Gathering complementary contextual information can effectively overcome the problem. Along this line, we propose a coarse-to-fine SR CNN (CFSRCNN) to recover a high-resolution (HR) image from its low-resolution version. The proposed CFSRCNN consists of a stack of feature extraction blocks (FEBs), an enhancement block (EB), a construction block (CB) and, a feature refinement block (FRB) to learn a robust SR model. Specifically, the stack of FEBs learns the long- and short-path features, and then fuses the learned features by expending the effect of the shallower layers to the deeper layers to improve the representing power of learned features. A compression unit is then used in each FEB to distill important information of features so as to reduce the number of parameters. Subsequently, the EB utilizes residual learning to integrate the extracted features to prevent from losing edge information due to repeated distillation operations. After that, the CB applies the global and local LR features to obtain coarse features, followed by the FRB to refine the features to reconstruct a high-resolution image. Extensive experiments demonstrate the high efficiency and good performance of our CFSRCNN model on benchmark datasets compared with state-of-the-art SR models. The code of CFSRCNN is accessible on https://github.com/hellloxiaotian/CFSRCNN .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
稳重傲柔发布了新的文献求助10
刚刚
科研通AI5应助见素采纳,获得10
2秒前
qiher关注了科研通微信公众号
2秒前
眯眯眼的世界完成签到,获得积分10
2秒前
xiaoxioayixi发布了新的文献求助10
5秒前
Hello应助Mars采纳,获得10
6秒前
6秒前
Bin完成签到,获得积分10
6秒前
CipherSage应助qinjiayin采纳,获得10
7秒前
迷路冰露关注了科研通微信公众号
7秒前
7秒前
8秒前
li完成签到,获得积分10
8秒前
嘀嘀哒哒完成签到,获得积分10
8秒前
tamo发布了新的文献求助10
9秒前
9秒前
9秒前
10秒前
酷波er应助文献互助1采纳,获得10
10秒前
传奇3应助清新的安波采纳,获得10
10秒前
科研通AI5应助saintly919采纳,获得10
10秒前
11秒前
玖玖完成签到,获得积分10
11秒前
小布丁发布了新的文献求助20
12秒前
科研通AI5应助loyal采纳,获得10
13秒前
zzx完成签到,获得积分10
14秒前
张琦发布了新的文献求助10
14秒前
15秒前
16秒前
16秒前
16秒前
所所应助努力学习的小鹏采纳,获得10
16秒前
17秒前
18秒前
18秒前
20秒前
Mars发布了新的文献求助10
20秒前
江峰发布了新的文献求助10
21秒前
多边形发布了新的文献求助30
21秒前
u1完成签到,获得积分10
21秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Functional Polyimide Dielectrics: Structure, Properties, and Applications 450
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795026
求助须知:如何正确求助?哪些是违规求助? 3339955
关于积分的说明 10298247
捐赠科研通 3056550
什么是DOI,文献DOI怎么找? 1677052
邀请新用户注册赠送积分活动 805118
科研通“疑难数据库(出版商)”最低求助积分说明 762333