Nondestructive identification of pesticide residues on the Hami melon surface using deep feature fusion by Vis/NIR spectroscopy and 1D‐CNN

人工智能 卷积神经网络 无损检测 模式识别(心理学) 特征(语言学) 农药残留 生物系统 计算机科学 化学 杀虫剂 物理 农学 语言学 量子力学 生物 哲学
作者
G. Yu,Benxue Ma,Jincheng Chen,Xiaozhan Li,Yujie Li,Cong Li
出处
期刊:Journal of Food Process Engineering [Wiley]
卷期号:44 (1) 被引量:43
标识
DOI:10.1111/jfpe.13602
摘要

Abstract Nondestructive identification of pesticide residues remains a challenge in terms of fruit safety assessment. In this study, a novel method based on visible/near‐infrared (Vis/NIR) spectroscopy (348.45–1,141.34 nm) combined with deep feature fusion was proposed, achieving nondestructive identification of pesticide residues on the Hami melon surface. The spectra of Hami melons with clear water and three kinds of pesticide residues (chlorothalonil, imidacloprid, and pyraclostrobin) were collected in the diffuse reflectance mode. The one‐dimensional convolutional neural network (1D‐CNN), with increased width and depth through parallel convolution modules and concatenate layers, was presented to capture multiple deep features from Vis/NIR spectra and fuse them. This model had a better performance for four‐class identification as the accuracy of 95.83%, and outperformed other CNN models and conventional approaches (partial least squares discriminant analysis and support vector machine). Moreover, the proposed 1D‐CNN model could accurately differentiate whether there were pesticide residues with the identification accuracy as 99.17%. However, the prediction of imidacloprid and pyraclostrobin residues was not accurate due to the similar spectral features. The overall studies indicated that the 1D‐CNN model with deep feature fusion looked promising for nondestructive identification of pesticide residues on the Hami melon surface based on Vis/NIR spectroscopy. Practical applications Visible and near‐infrared (Vis/NIR) spectroscopy, as a nondestructive technique, looks promising for evaluation of fruit quality and safety. One‐dimensional convolutional neural network, with deep feature fusion structure to capture multi‐scale spectral information, has a better identification of pesticide residues on the Hami melon surface. Vis/NIR spectroscopy with deep feature fusion can be applied in research and development of a nondestructive detector for pesticide residues on the thick‐skinned fruit surface in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
徐小锤完成签到 ,获得积分10
1秒前
科研通AI5应助ll采纳,获得10
2秒前
科研通AI5应助伏城采纳,获得30
3秒前
4秒前
旷野完成签到,获得积分10
5秒前
ruoyu111完成签到,获得积分10
6秒前
ChrisKim完成签到,获得积分10
8秒前
9秒前
秋半梦完成签到,获得积分10
9秒前
11秒前
12秒前
13秒前
阳光的卿关注了科研通微信公众号
13秒前
LH完成签到,获得积分10
14秒前
AAA完成签到,获得积分10
14秒前
科研通AI5应助cjjd采纳,获得10
16秒前
wuxunxun2015发布了新的文献求助10
17秒前
伏城发布了新的文献求助30
17秒前
marco完成签到 ,获得积分10
17秒前
弹指一挥间完成签到 ,获得积分10
21秒前
李浩然完成签到,获得积分10
24秒前
苏桑焉完成签到 ,获得积分10
25秒前
27秒前
小马甲应助叶长亭采纳,获得10
28秒前
29秒前
繁荣的忆文完成签到,获得积分10
30秒前
cjjd完成签到,获得积分10
30秒前
30秒前
李浩然发布了新的文献求助10
32秒前
32秒前
ll发布了新的文献求助10
33秒前
cjjd发布了新的文献求助10
35秒前
35秒前
cmicha完成签到 ,获得积分10
38秒前
石火发布了新的文献求助10
38秒前
41秒前
Owen应助cmicha采纳,获得10
42秒前
Yami完成签到 ,获得积分10
44秒前
可爱的函函应助打我呀采纳,获得10
46秒前
46秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
Individualized positive end-expiratory pressure in laparoscopic surgery: a randomized controlled trial 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3761753
求助须知:如何正确求助?哪些是违规求助? 3305518
关于积分的说明 10134626
捐赠科研通 3019564
什么是DOI,文献DOI怎么找? 1658226
邀请新用户注册赠送积分活动 791974
科研通“疑难数据库(出版商)”最低求助积分说明 754751