Diagnosis model for bearing faults in rotating machinery by using vibration signals and binary logistic regression

方位(导航) 振动 断层(地质) 计算机科学 时域 状态监测 故障检测与隔离 数据挖掘 人工神经网络 人工智能 工程类 逻辑回归 模式识别(心理学) 机器学习 计算机视觉 物理 地质学 地震学 执行机构 电气工程 量子力学
作者
Ahmed M. Abdelrhman,Lim Shuang Ying,Yasir Hassan Ali,Iftikhar Ahmad,Christina G. Georgantopoulou,Fethma M. Nor,Denni Kurniawan
出处
期刊:Nucleation and Atmospheric Aerosols 卷期号:2262: 030014-030014 被引量:4
标识
DOI:10.1063/5.0017221
摘要

As an important part of rotating machinery, bearing state affects the whole effectiveness and stability of machine components. Recently, many condition monitoring techniques have been developed for bearing fault detection and diagnosis to avoid malfunctioning during operation that might lead to catastrophic failures or even deaths. Vibration monitoring technique is the mostly used as it is cost-effective to detect, locate and estimate bearing faults. Within the technique, the time domain features are favourable to be used for fault machinery faults detection and diagnosis. This is due to its advantages, including it contains all the machine faults information and possibility of using much data for easy and clear fault diagnosis. This study proposes a diagnosis model for bearing faults in rotating machinery based on time domain features and binary logistic regression (BLR) modelling technique of a vibration signals. The steps of the new fault prediction method for bearings are as follows. First, vibration data were collected. Second, the effective time domain parameters extraction from the acquired vibration data sets using multivariate analysis of variance (MANOVA). Third, the data-splitting technique was employed. Here the predictive modelling was performed based on the BLR modelling technique by using the most salient time domain parameters of bearing fault state on the training data set and the selected BLR model was internally validated by using the testing data set. Finally, a comparison was made between the selected BLR model and an artificial neural network model with regards to their accuracy, computational efforts, and effectiveness. The results show the effectiveness and plausibility of the proposed method, which can support timely maintenance decisions in order to facilitate machine performance and fault prediction and to prevent catastrophic failures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
democienceek完成签到,获得积分10
刚刚
LouisKing发布了新的文献求助10
刚刚
swjs08完成签到,获得积分10
2秒前
梦里花落声应助耕牛热采纳,获得10
2秒前
5秒前
wushenghao发布了新的文献求助10
5秒前
6秒前
Red-Rain发布了新的文献求助30
8秒前
9秒前
moon完成签到,获得积分10
11秒前
小小菜鸟芬完成签到,获得积分10
11秒前
HI4完成签到,获得积分10
11秒前
11秒前
科研小白完成签到,获得积分10
11秒前
秀秀发布了新的文献求助10
12秒前
啊嘟嘟女士完成签到,获得积分10
12秒前
慕青应助figure采纳,获得10
14秒前
ouyoha完成签到,获得积分10
15秒前
酷酷山柳完成签到 ,获得积分10
17秒前
zjfmmu完成签到,获得积分10
17秒前
zhuqian完成签到,获得积分10
18秒前
19秒前
田様应助hhh采纳,获得10
20秒前
maguodrgon发布了新的文献求助10
20秒前
哈哈哈完成签到,获得积分10
21秒前
Liumj发布了新的文献求助30
22秒前
陈陈陈完成签到,获得积分10
22秒前
情怀应助ada采纳,获得10
23秒前
peaches发布了新的文献求助10
24秒前
斯文败类应助董耀文采纳,获得10
24秒前
25秒前
汉堡包应助威武的戎采纳,获得10
25秒前
聪明藏今完成签到,获得积分10
25秒前
28秒前
冷迎梦发布了新的文献求助10
29秒前
CL完成签到,获得积分10
31秒前
HW发布了新的文献求助10
31秒前
英姑应助科研通管家采纳,获得10
31秒前
传奇3应助科研通管家采纳,获得10
31秒前
英俊的铭应助科研通管家采纳,获得10
31秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Reliability Monitoring Program 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5339366
求助须知:如何正确求助?哪些是违规求助? 4476236
关于积分的说明 13930768
捐赠科研通 4371637
什么是DOI,文献DOI怎么找? 2402047
邀请新用户注册赠送积分活动 1394975
关于科研通互助平台的介绍 1366898