Deep Learning Based Binary Classification for Alzheimer’s Disease Detection using Brain MRI Images

人工智能 计算机科学 二元分类 模式识别(心理学) 深度学习 疾病 脑病 医学 支持向量机 病理
作者
Emtiaz Hussain,Mahmudul Hasan,Syed Zafrul Hassan,Tanzina Hassan Azmi,Anisur Rahman,Mohammad Zavid Parvez
标识
DOI:10.1109/iciea48937.2020.9248213
摘要

Alzheimer's disease is an irremediable, continuous brain disorder that gradually destroys memory and thinking skills and, eventually, the ability to carry out the simplest tasks. It has become one of the critical diseases throughout the world. Moreover, there is no remedy for Alzheimer's disease. Machine learning techniques, especially deep learning-based Convolutional Neural Network (CNN), are used to improve the process for the detection of Alzheimer's disease. In recent days, CNN has achieved major success in MRI image analysis and biomedical research. A lot of research has been carried out for the detection of Alzheimer's disease based on brain MRI images using CNN. However, one of the fundamental limitations is that proper comparison between a proposed CNN model and pre-trained CNN models (InceptionV3, Xception, MobilenetV2, VGG) was not established. Therefore, in this paper, we present a model based on 12-layer CNN for binary classification and detection of Alzheimer's disease using brain MRI data. The performance of the proposed model is compared with some existing CNN models in terms of accuracy, precision, recall, F1 score, and ROC curve on the Open Access Series of Imaging Studies (OASIS) dataset. The main contribution of the paper is a 12-layer CNN model with an accuracy of 97.75%, which is higher than any other existing CNN models published on this dataset. The paper also shows side by side comparison between our proposed model and pre-trained CNN models (InceptioV3, Xception, MobilenetV2, VGG). The experimental results show the superiority of the proposed model over the existing models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
风风风完成签到,获得积分10
刚刚
番茄酱完成签到,获得积分20
刚刚
1秒前
1秒前
wyd完成签到,获得积分10
1秒前
asd_1发布了新的文献求助10
1秒前
科研通AI2S应助自由思枫采纳,获得10
1秒前
鸠摩智完成签到,获得积分10
2秒前
曾予嘉完成签到 ,获得积分10
3秒前
viycole完成签到,获得积分10
3秒前
逸风望完成签到,获得积分10
4秒前
英俊的铭应助YY采纳,获得10
4秒前
4秒前
4秒前
5秒前
小二郎应助kk采纳,获得20
5秒前
wyuxilong完成签到,获得积分10
6秒前
6秒前
汪汪队完成签到 ,获得积分20
7秒前
8秒前
西瘡完成签到,获得积分10
9秒前
妖妖灵发布了新的文献求助10
9秒前
稚昂发布了新的文献求助10
9秒前
10秒前
量子星尘发布了新的文献求助10
11秒前
无辜汉堡发布了新的文献求助10
12秒前
12秒前
转山转水完成签到,获得积分10
12秒前
wendy发布了新的文献求助10
12秒前
一叶扁舟发布了新的文献求助10
13秒前
15秒前
111完成签到,获得积分10
16秒前
沈晨发布了新的文献求助10
17秒前
FashionBoy应助一叶扁舟采纳,获得10
17秒前
18秒前
changping应助妖妖灵采纳,获得10
18秒前
科研通AI5应助TIWOSS采纳,获得10
19秒前
隐形曼青应助江洋大盗采纳,获得10
19秒前
Geist发布了新的文献求助30
19秒前
明灯三千完成签到,获得积分10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 1200
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
La cage des méridiens. La littérature et l’art contemporain face à la globalisation 577
Practical Invisalign Mechanics: Crowding 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4954252
求助须知:如何正确求助?哪些是违规求助? 4216573
关于积分的说明 13119708
捐赠科研通 3998788
什么是DOI,文献DOI怎么找? 2188477
邀请新用户注册赠送积分活动 1203654
关于科研通互助平台的介绍 1116068