Pore model for nanofiltration: History, theoretical framework, key predictions, limitations, and prospects

纳滤 生物系统 计算机科学 生化工程 化学 纳米技术 材料科学 工程类 生物化学 生物
作者
Ruoyu Wang,Shihong Lin
出处
期刊:Journal of Membrane Science [Elsevier BV]
卷期号:620: 118809-118809 被引量:153
标识
DOI:10.1016/j.memsci.2020.118809
摘要

This review introduces the development history of the widely used NF model, i.e., the Donnan-Steric Pore Model with Dielectric Exclusion (DSPM-DE), from the emergence of its predecessors to its current form. We present the details of DSPM-DE with assumptions and equations that account for each mechanism. Model inputs and outputs, as well as the key parameters and the experimental procedures for determining these parameters are also explained. Furthermore, the DSPM-DE is applied to investigate NF performance under various conditions. Specifically, the DSPM-DE is employed to provide a mechanistic interpretation of the well-known selectivity-permeability tradeoff that is more typically applied to describe the behavior of non-porous membrane. Based on the simulations using the DSPM-DE, we also discuss strategies on enhancing NF performance via tuning membrane properties. NF membranes with thin active layer and small nanopores that are strongly hydrophilic and charged are beneficial to achieving a high perm-selectivity. Analysis is also performed on the separation of divalent and monovalent cations using DSPM-DE. Finally, we discuss the uncertainties of model parameters and their impacts on the model prediction. We also discuss the validity of fundamental model assumptions and the prospects on potential improvements of NF modeling to enhance the utility in predicting NF performance. Machine learning-based models, once trained with a large set of data, are likely more powerful than DSPE-DE or any physical NF model in future application of performance prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
望远镜发布了新的文献求助10
1秒前
Iris发布了新的文献求助10
3秒前
4秒前
4秒前
Hxq完成签到 ,获得积分10
5秒前
wanci应助半夏采纳,获得20
6秒前
Lucas应助满眼星辰采纳,获得10
7秒前
8秒前
10秒前
无花果应助Iris采纳,获得10
10秒前
俏皮白云发布了新的文献求助10
10秒前
affy210310完成签到,获得积分10
10秒前
11秒前
思源应助kangkang采纳,获得10
12秒前
饱满的箴完成签到,获得积分10
15秒前
orixero应助内向的野狼采纳,获得10
15秒前
儒雅无血发布了新的文献求助10
16秒前
16秒前
17秒前
开局发布了新的文献求助30
17秒前
washy完成签到,获得积分10
18秒前
21秒前
pain豆先生完成签到 ,获得积分10
21秒前
22秒前
清脆的涔发布了新的文献求助30
23秒前
西米发布了新的文献求助10
24秒前
GillianRan完成签到 ,获得积分20
25秒前
包容的世倌完成签到 ,获得积分10
25秒前
我是老大应助小小坤采纳,获得10
26秒前
26秒前
放假完成签到,获得积分10
26秒前
阿牛奶发布了新的文献求助10
27秒前
吱吱发布了新的文献求助10
28秒前
pcr163应助Ttong采纳,获得200
28秒前
夜白应助文静秋双采纳,获得20
29秒前
靖靖雯发布了新的文献求助10
29秒前
29秒前
29秒前
30秒前
打打应助倦梦还采纳,获得10
31秒前
高分求助中
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
The acute effects of different percentages of blood flow restrictions on all-out back squat exercise 200
How We Sold Our Future: The Failure to Fight Climate Change 200
Lab Dog: What Global Science Owes American Beagles 200
Encyclopaedia Britannica 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3824664
求助须知:如何正确求助?哪些是违规求助? 3366913
关于积分的说明 10443514
捐赠科研通 3086262
什么是DOI,文献DOI怎么找? 1697803
邀请新用户注册赠送积分活动 816558
科研通“疑难数据库(出版商)”最低求助积分说明 769762