组合数学
数学
猜想
边着色
顶点(图论)
外稃(植物学)
分数着色
列表着色
图形
完全着色
离散数学
图形功率
折线图
生态学
禾本科
生物
作者
Gwenaël Joret,William Lochet
摘要
A proper edge coloring of a graph is adjacent vertex distinguishing if no two adjacent vertices see the same set of colors. Using a clever application of the local lemma, Hatami [J. Combin. Theory Ser. B, 95 (2005), pp. 246--256] proved that every graph with maximum degree $\Delta$ and no isolated edge has an adjacent vertex distinguishing edge coloring with $\Delta + 300$ colors, provided $\Delta$ is large enough. We show that this bound can be reduced to $\Delta + 19$. This is motivated by the conjecture of Zhang, Liu, and Wang [Appl. Math. Lett., 15 (2002), pp. 623--626] that $\Delta + 2$ colors are enough for $\Delta \geqslant 3$.
科研通智能强力驱动
Strongly Powered by AbleSci AI