A Framework of Spatio-Temporal Fusion Algorithm Selection for Landsat NDVI Time Series Construction

归一化差异植被指数 系列(地层学) 融合 传感器融合 遥感 时间序列 土地覆盖 算法 图像融合 计算机科学 时间分辨率 像素 数学 人工智能 地理 图像(数学) 机器学习 土地利用 地质学 气候变化 哲学 量子力学 海洋学 物理 古生物学 土木工程 工程类 语言学
作者
Yangnan Guo,Cangjiao Wang,Shaogang Lei,Junzhe Yang,Yibo Zhao
出处
期刊:ISPRS international journal of geo-information [MDPI AG]
卷期号:9 (11): 665-665 被引量:17
标识
DOI:10.3390/ijgi9110665
摘要

Spatio-temporal fusion algorithms dramatically enhance the application of the Landsat time series. However, each spatio-temporal fusion algorithm has its pros and cons of heterogeneous land cover performance, the minimal number of input image pairs, and its efficiency. This study aimed to answer: (1) how to determine the adaptability of the spatio-temporal fusion algorithm for predicting images in prediction date and (2) whether the Landsat normalized difference vegetation index (NDVI) time series would benefit from the interpolation with images fused from multiple spatio-temporal fusion algorithms. Thus, we supposed a linear relationship existed between the fusion accuracy and spatial and temporal variance. Taking the Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM) and the Enhanced STARFM (ESTARFM) as basic algorithms, a framework was designed to screen a spatio-temporal fusion algorithm for the Landsat NDVI time series construction. The screening rule was designed by fitting the linear relationship between the spatial and temporal variance and fusion algorithm accuracy, and then the fitted relationship was combined with the graded accuracy selecting rule (R2) to select the fusion algorithm. The results indicated that the constructed Landsat NDVI time series by this paper proposed framework exhibited the highest overall accuracy (88.18%), and lowest omission (1.82%) and commission errors (10.00%) in land cover change detection compared with the moderate resolution imaging spectroradiometer (MODIS) NDVI time series and the NDVI time series constructed by a single STARFM or ESTARFM. Phenological stability analysis demonstrated that the Landsat NDVI time series established by multiple spatio-temporal algorithms could effectively avoid phenological fluctuations in the time series constructed by a single fusion algorithm. We believe that this framework can help improve the quality of the Landsat NDVI time series and fulfill the gap between near real-time environmental monitoring mandates and data-scarcity reality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
123456发布了新的文献求助10
1秒前
paper完成签到 ,获得积分10
1秒前
打打应助小y同学采纳,获得10
1秒前
1秒前
SciGPT应助月恒山辉采纳,获得10
2秒前
novose完成签到,获得积分10
2秒前
Angina吴完成签到,获得积分10
2秒前
嗯嗯发布了新的文献求助10
3秒前
贰壹完成签到 ,获得积分10
3秒前
Zhang发布了新的文献求助10
3秒前
arnoan发布了新的文献求助10
3秒前
zdd发布了新的文献求助10
3秒前
研友_VZG7GZ应助友好薯片采纳,获得10
3秒前
3秒前
4秒前
4秒前
5秒前
香蕉萝完成签到 ,获得积分10
6秒前
刘liu完成签到,获得积分10
6秒前
68686868发布了新的文献求助20
6秒前
打打应助玛卡巴卡采纳,获得10
7秒前
7秒前
8秒前
小蘑菇应助卷饼采纳,获得10
8秒前
冯业栋发布了新的文献求助10
8秒前
77发布了新的文献求助30
9秒前
我是老大应助masijiee采纳,获得10
9秒前
hxl发布了新的文献求助10
9秒前
小底完成签到,获得积分10
9秒前
11秒前
12秒前
12秒前
13秒前
852应助明理的帆布鞋采纳,获得10
13秒前
13秒前
Linshutang发布了新的文献求助10
14秒前
14秒前
悦耳伟宸发布了新的文献求助10
14秒前
14秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5694967
求助须知:如何正确求助?哪些是违规求助? 5099560
关于积分的说明 15214900
捐赠科研通 4851435
什么是DOI,文献DOI怎么找? 2602325
邀请新用户注册赠送积分活动 1554189
关于科研通互助平台的介绍 1512137