APLCNet: Automatic Pixel-Level Crack Detection Network Based on Instance Segmentation

计算机科学 分割 像素 人工智能 特征(语言学) 精确性和召回率 自动化 噪音(视频) 目标检测 计算机视觉 模式识别(心理学) 图像(数学) 工程类 语言学 机械工程 哲学
作者
Yuefei Zhang,Bin Chen,Jinfei Wang,Jianming Li,Xiaofei Sun
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:8: 199159-199170 被引量:31
标识
DOI:10.1109/access.2020.3033661
摘要

The accurate and automatic detection of pavement cracks is essential for pavement maintenance. However, automatic crack detection remains a challenging problem due to the inconspicuous visual features of cracks in complex pavement backgrounds, the complicated shapes and structures of cracks, and the influences of weather changes and noise. In recent years, with the development of artificial intelligence technology, crack detection methods based on classification and semantic segmentation have laid a good foundation for the automation of pavement crack detection. However, there remain shortcomings in the comprehensive acquisition of pavement crack attribute information and detection accuracy. To solve these problems, this paper proposes an instance segmentation network for pavement crack detection. The network can simultaneously obtain the crack category, position, and mask, and can realize end-to-end pixel-level crack detection. A semantic segmentation branch is first added to Mask R-CNN. This branch can extract the bottom-level detail information of the cracks and ultimately improves the accuracy of crack mask prediction. An adaptive feature fusion module is then designed. During feature fusion, this module highlights the attribute information and location information of cracks according to the channel attention mechanism and the spatial attention mechanism. Finally, these two modules are integrated to form an automatic pixel-level crack detection network, namely APLCNet. Without any embellishment, APLCNet achieves a precision of 92.21%, a recall of 94.89%, and an F1-score of 93.53% on the challenging public CFD dataset, thereby outperforming CrackForest and MFCD for pixel-wise crack detection. Moreover, APLCNet achieves a 16.5% mask AP on the self-captured GDPH dataset, thereby surpassing Mask R-CNN and PANet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CodeCraft应助GWT采纳,获得10
刚刚
刚刚
刚刚
深情安青应助韩羽丰采纳,获得10
1秒前
1秒前
文献发布了新的文献求助10
1秒前
明亮的若南完成签到 ,获得积分10
2秒前
无语啦完成签到,获得积分10
2秒前
2秒前
yoho完成签到,获得积分10
2秒前
linhuiyin发布了新的文献求助10
2秒前
无花果应助Cooby采纳,获得10
3秒前
3秒前
烂漫香水完成签到 ,获得积分10
3秒前
科研通AI2S应助飘逸的海云采纳,获得10
4秒前
子车茗应助一颗椰子糖耶采纳,获得20
4秒前
4秒前
4秒前
4秒前
5秒前
Timing发布了新的文献求助10
5秒前
5秒前
6秒前
羊笨笨完成签到,获得积分10
6秒前
碧蓝亦玉完成签到,获得积分10
6秒前
7秒前
8秒前
懒大王发布了新的文献求助30
8秒前
猫猫熊发布了新的文献求助10
8秒前
9秒前
kongchao008完成签到,获得积分10
9秒前
xmz完成签到,获得积分10
9秒前
里卡发布了新的文献求助10
9秒前
9秒前
10秒前
科研通AI5应助张张采纳,获得10
10秒前
10秒前
高兴荔枝发布了新的文献求助20
12秒前
糕糕发布了新的文献求助10
12秒前
12秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
Hydropower Nation: Dams, Energy, and Political Changes in Twentieth-Century China 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
Microfluidic Cell Culture Systems 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3805810
求助须知:如何正确求助?哪些是违规求助? 3350734
关于积分的说明 10350610
捐赠科研通 3066591
什么是DOI,文献DOI怎么找? 1683999
邀请新用户注册赠送积分活动 809197
科研通“疑难数据库(出版商)”最低求助积分说明 765407