BCH码
共轭班
数学
代数数
订单(交换)
离散数学
解码方法
算法
财务
数学分析
经济
作者
Christian Senger,Rohit Bohara
标识
DOI:10.1109/isit.2018.8437645
摘要
The problem of finding subfield subcodes of generalized Reed-Solomon (GRS) codes (i.e., alternant codes) is considered. A pure linear algebraic approach is taken in order to derive message constraints that generalize the well known conjugacy constraints for cyclic GRS codes and their Bose-Chaudhuri-Hocquenghem (BCH) subfield subcodes. It is shown that the presented technique can be used for finding nested subfield subcodes with increasing design distance.
科研通智能强力驱动
Strongly Powered by AbleSci AI