亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Strongly Minimal Self-Conjugate Linearizations for Polynomial and Rational Matrices

数学 兰姆达 矩阵多项式 多项式的 厄米矩阵 基质(化学分析) 线性化 离散数学 纯数学 组合数学 域代数上的 数学分析 物理 材料科学 非线性系统 量子力学 光学 复合材料
作者
Froilán M. Dopico,María C. Quintana,Paul Van Dooren
出处
期刊:SIAM Journal on Matrix Analysis and Applications [Society for Industrial and Applied Mathematics]
卷期号:43 (3): 1354-1381 被引量:5
标识
DOI:10.1137/21m1453542
摘要

We prove that we can always construct strongly minimal linearizations of an arbitrary rational matrix from its Laurent expansion around the point at infinity, which happens to be the case for polynomial matrices expressed in the monomial basis. If the rational matrix has a particular self-conjugate structure, we show how to construct strongly minimal linearizations that preserve it. The structures that are considered are the Hermitian and skew-Hermitian rational matrices with respect to the real line, and the para-Hermitian and para-skew-Hermitian matrices with respect to the imaginary axis. We pay special attention to the construction of strongly minimal linearizations for the particular case of structured polynomial matrices. The proposed constructions lead to efficient numerical algorithms for constructing strongly minimal linearizations. The fact that they are valid for any rational matrix is an improvement on any other previous approach for constructing other classes of structure preserving linearizations, which are not valid for any structured rational or polynomial matrix. The use of the recent concept of strongly minimal linearization is the key for getting such generality. Strongly minimal linearizations are Rosenbrock's polynomial system matrices of the given rational matrix, but with a quadruple of linear polynomial matrices (i.e., pencils): $L(\lambda):=\Big[\begin{array}{ccc} A(\lambda) & -B(\lambda) \\ C(\lambda) & D(\lambda) \end{array}\Big]$, where $A(\lambda)$ is regular, and the pencils $ \left[\begin{array}{ccc} A(\lambda) & -B(\lambda) \end{array}\right]$ and $ \Big[\begin{array}{ccc} A(\lambda) \\ C(\lambda) \end{array}\Big]$ have no finite or infinite eigenvalues. Strongly minimal linearizations contain the complete information about the zeros, poles, and minimal indices of the rational matrix and allow one to very easily recover its eigenvectors and minimal bases. Thus, they can be combined with algorithms for the generalized eigenvalue problem for computing the complete spectral information of the rational matrix.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JamesPei应助微笑的天德采纳,获得10
14秒前
小蘑菇应助科研通管家采纳,获得10
39秒前
49秒前
金光一闪发布了新的文献求助10
53秒前
Henry完成签到,获得积分10
1分钟前
1分钟前
Magali发布了新的文献求助50
2分钟前
脑洞疼应助金光一闪采纳,获得30
2分钟前
金光一闪完成签到,获得积分10
2分钟前
赘婿应助Wong采纳,获得20
4分钟前
等待听安完成签到 ,获得积分10
5分钟前
5分钟前
sunialnd完成签到,获得积分10
5分钟前
Wong发布了新的文献求助20
5分钟前
HuiHui完成签到,获得积分10
5分钟前
馆长应助sho采纳,获得30
5分钟前
馆长应助sho采纳,获得30
6分钟前
Wong完成签到,获得积分10
6分钟前
科研通AI5应助科研通管家采纳,获得10
6分钟前
馆长应助sho采纳,获得30
6分钟前
馆长应助sho采纳,获得30
7分钟前
繁觅完成签到,获得积分10
8分钟前
sho完成签到,获得积分10
8分钟前
馆长应助sho采纳,获得30
9分钟前
脑洞疼应助cloud采纳,获得10
9分钟前
10分钟前
cloud发布了新的文献求助10
10分钟前
馆长应助sho采纳,获得30
10分钟前
cloud完成签到,获得积分10
10分钟前
10分钟前
krajicek完成签到,获得积分10
10分钟前
10分钟前
10分钟前
落落完成签到 ,获得积分0
11分钟前
11分钟前
雨jia发布了新的文献求助10
11分钟前
独特的追命应助雨jia采纳,获得10
11分钟前
牛八先生完成签到,获得积分10
11分钟前
Jasper应助微笑的天德采纳,获得10
12分钟前
12分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 800
求中国石油大学(北京)图书馆的硕士论文,作者董晨,十年前搞太赫兹的 500
Vertebrate Palaeontology, 5th Edition 500
Narrative Method and Narrative form in Masaccio's Tribute Money 500
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4773733
求助须知:如何正确求助?哪些是违规求助? 4107138
关于积分的说明 12704556
捐赠科研通 3827543
什么是DOI,文献DOI怎么找? 2111668
邀请新用户注册赠送积分活动 1135662
关于科研通互助平台的介绍 1018711