DAEMON: Unsupervised Anomaly Detection and Interpretation for Multivariate Time Series

异常检测 计算机科学 守护程序 自编码 人工智能 异常(物理) 数据挖掘 系列(地层学) 单变量 时间序列 模式识别(心理学) 多元统计 机器学习 深度学习 生物 物理 古生物学 计算机网络 凝聚态物理
作者
Xuanhao Chen,Liwei Deng,Feiteng Huang,Chengwei Zhang,Zongquan Zhang,Yan Zhao,Kai Zheng
标识
DOI:10.1109/icde51399.2021.00228
摘要

In many complex systems, devices are typically monitored and generating massive multivariate time series. However, due to the complex patterns and little useful labeled data, it is a great challenge to detect anomalies from these time series data. Existing methods either rely on less regularizations, or require a large number of labeled data, leading to poor accuracy in anomaly detection. To overcome those limitations, in this paper, we propose an unsupervised anomaly detection framework, called DAEMON (Adversarial Autoencoder Anomaly Detection Interpretation), which performs robustly for various datasets. The key idea is to use two discriminators to adversarially train an autoencoder to learn the normal pattern of multivariate time series, and thereafter use the reconstruction error to detect anomalies. The robustness of DAEMON is guaranteed by the regularization of hidden variables and reconstructed data using the adversarial generation method. Moreover, in order to help operators better diagnose anomalies, DAEMON provides anomaly interpretation based on the reconstruction error of the constituent univariate time series. Experiment results on four real datasets show that DAEMON can achieve an overall F1-score of 0.94, outperforming state-of-the-art methods. In addition, the anomaly interpretation accuracy of DAEMON can achieve 97%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
优雅亦绿发布了新的文献求助10
2秒前
小郭发布了新的文献求助10
2秒前
2秒前
3秒前
xxy发布了新的文献求助10
3秒前
moon发布了新的文献求助10
3秒前
我就是KKKK发布了新的文献求助10
4秒前
YouziBa完成签到,获得积分10
4秒前
小飞飞发布了新的文献求助10
5秒前
AiX-zzzzz发布了新的文献求助10
5秒前
科研通AI5应助cx111采纳,获得10
5秒前
LCX完成签到,获得积分10
5秒前
6秒前
6秒前
Kiki发布了新的文献求助10
6秒前
可一发布了新的文献求助10
6秒前
7秒前
7秒前
7秒前
灵巧的之瑶完成签到,获得积分10
8秒前
8秒前
Fiona完成签到 ,获得积分10
8秒前
9秒前
9秒前
11秒前
11秒前
林夕完成签到,获得积分10
12秒前
小聂发布了新的文献求助10
12秒前
zhangqi发布了新的文献求助50
13秒前
赶紧大聪明完成签到,获得积分10
14秒前
YD发布了新的文献求助10
14秒前
15秒前
15秒前
16秒前
16秒前
Aqua完成签到,获得积分10
17秒前
科研通AI5应助Xiexie采纳,获得10
17秒前
18秒前
18秒前
专注的秋珊完成签到,获得积分10
19秒前
高分求助中
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Visceral obesity is associated with clinical and inflammatory features of asthma: A prospective cohort study 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
HVAC 1 toolkit : a toolkit for primary HVAC system energy calculation 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3839628
求助须知:如何正确求助?哪些是违规求助? 3382022
关于积分的说明 10520773
捐赠科研通 3101419
什么是DOI,文献DOI怎么找? 1708054
邀请新用户注册赠送积分活动 822103
科研通“疑难数据库(出版商)”最低求助积分说明 773203