NBS-Predict: A prediction-based extension of the network-based statistic

计算机科学 统计的 人工智能 数据挖掘 连接体 单变量 机器学习 推论 排列(音乐) 图形 人类连接体项目 统计推断 模式识别(心理学) 功能连接 统计 多元统计 数学 理论计算机科学 物理 神经科学 生物 声学
作者
Emin Serin,Andrew Zalesky,Adu Matory,Henrik Walter,Johann Kruschwitz
出处
期刊:NeuroImage [Elsevier BV]
卷期号:244: 118625-118625 被引量:49
标识
DOI:10.1016/j.neuroimage.2021.118625
摘要

Graph models of the brain hold great promise as a framework to study functional and structural brain connectivity across scales and species. The network-based statistic (NBS) is a well-known tool for performing statistical inference on brain graphs, which controls the family-wise error rate in a mass univariate analysis by combining the cluster-based permutation technique and the graph-theoretical concept of connected components. As the NBS is based on group-level inference statistics, it does not inherently enable informed decisions at the level of individuals, which is, however, necessary for the realm of precision medicine. Here we introduce NBS-Predict, a new approach that combines the powerful features of machine learning (ML) and the NBS in a user-friendly graphical user interface (GUI). By combining ML models with connected components in a cross-validation (CV) structure, the new methodology provides a fast and convenient tool to identify generalizable neuroimaging-based biomarkers. The purpose of this paper is to (i) introduce NBS-Predict and evaluate its performance using two sets of simulated data with known ground truths, (ii) demonstrate the application of NBS-Predict in a real case-control study, including resting-state functional magnetic resonance imaging (rs-fMRI) data acquired from patients with schizophrenia, (iii) evaluate NBS-Predict using rs-fMRI data from the Human Connectome Project 1200 subjects release. We found that: (i) NBS-Predict achieved good statistical power on two sets of simulated data; (ii) NBS-Predict classified schizophrenia with an accuracy of 90% using subjects' functional connectivity matrices and identified a subnetwork with reduced connections in the group with schizophrenia, mainly comprising brain regions localized in frontotemporal, visual, and motor areas, as well as in the subcortex; (iii) NBS-Predict also predicted general intelligence scores from resting-state fMRI connectivity matrices with a prediction score of r = 0.2 and identified a large-scale subnetwork associated with general intelligence. Overall results showed that NBS-Predict performed comparable to or better than pre-existing feature selection algorithms (lasso, elastic net, top 5%, p-value thresholding) and connectome-based predictive modeling (CPM) in terms of identifying relevant features and prediction accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Sun发布了新的文献求助10
1秒前
北风完成签到 ,获得积分10
1秒前
薛妖怪完成签到,获得积分10
2秒前
4秒前
沉静的歌曲完成签到,获得积分10
4秒前
mawenyu完成签到,获得积分10
4秒前
wyg117完成签到,获得积分10
6秒前
yangzhang完成签到,获得积分10
7秒前
陈嗲嗲发布了新的文献求助10
7秒前
JING完成签到,获得积分20
9秒前
xty完成签到,获得积分10
10秒前
上官若男应助我爱查文献采纳,获得10
12秒前
fazat完成签到,获得积分20
13秒前
大力犀牛完成签到,获得积分10
15秒前
陈嗲嗲完成签到,获得积分20
15秒前
zhang完成签到,获得积分10
15秒前
糖不甜完成签到,获得积分10
16秒前
璇璇完成签到 ,获得积分10
16秒前
LIU完成签到 ,获得积分10
21秒前
路脚下完成签到 ,获得积分10
22秒前
Liu完成签到,获得积分10
23秒前
drlq2022完成签到,获得积分10
23秒前
KX2024完成签到,获得积分10
24秒前
yurunxintian完成签到,获得积分10
24秒前
打打应助蓝桉采纳,获得30
24秒前
111完成签到,获得积分10
26秒前
27秒前
柠檬完成签到 ,获得积分10
28秒前
28秒前
皓轩完成签到 ,获得积分10
30秒前
tgd完成签到,获得积分10
33秒前
Singularity发布了新的文献求助10
33秒前
洁净的易巧完成签到,获得积分10
33秒前
34秒前
风犬少年完成签到,获得积分10
36秒前
田乐天完成签到 ,获得积分10
36秒前
zhangjianzeng完成签到 ,获得积分10
37秒前
38秒前
经卿完成签到 ,获得积分10
38秒前
39秒前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
Political Ideologies Their Origins and Impact 13 edition 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801096
求助须知:如何正确求助?哪些是违规求助? 3346745
关于积分的说明 10330078
捐赠科研通 3063130
什么是DOI,文献DOI怎么找? 1681349
邀请新用户注册赠送积分活动 807509
科研通“疑难数据库(出版商)”最低求助积分说明 763726