Effects of hydrogen on the deformation mechanism of face-centred cubic Fe–C single crystal with nanovoid: A molecular dynamics simulation

分子动力学 结晶学 变形(气象学) 雷亚克夫 动力学(音乐) 压力(语言学) 化学物理 原子间势 Crystal(编程语言) 嵌入原子模型 应变率 分子物理学
作者
Ye Jiao,WenJiao Dan,Weigang Zhang
出处
期刊:Journal of Alloys and Compounds [Elsevier]
卷期号:870: 159330- 被引量:1
标识
DOI:10.1016/j.jallcom.2021.159330
摘要

Abstract In the present work, the deformation mechanisms of face-centred cubic (fcc) Fe–C single crystal with nanovoid containing hydrogen at various contents are investigated by molecular dynamics (MD) tensile simulations. The microstructural evolution of the supercell without H reveals that the plastic deformation mechanism is fcc→bcc→hcp continuous martensitic transformation. For the supercell containing 2 at% H, the mechanical response and plastic deformation mechanism are similar to those of the supercell without H. The difference is that bcc martensite nucleation is accompanied by dislocation nucleation, which indicates that a small amount of H addition will promote dislocation slip. When the H content reaches 5 at%, the dislocation slip enhanced by H completely overcomes the martensitic transformation and becomes the main plastic deformation mechanism. By analysing the per-atom potential energy of H atoms and Fe atoms, it is found that the potential energy of H atoms near the dislocation line and on the slip plane will increase, which may reduce the lattice resistance of dislocation slip. Moreover, the addition of H increases the average potential energy of fcc Fe atoms, which results in the reduction in Fe atomic binding, thus increasing the dislocation mobility. The dislocation slip causes localized plasticity on the nanovoid surface, which promotes the expansion of the nanovoid and leads to hydrogen embrittlement. The martensitic transformation and dislocation slip are prone to nucleation at the edge of the nanovoid, which indicates that in practical situations, void defects with sharp corners could induce premature plastic deformation in fcc crystals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
香蕉觅云应助优亦采纳,获得10
1秒前
1秒前
假装超人会飞完成签到,获得积分10
1秒前
酵父发布了新的文献求助30
1秒前
安和桥发布了新的文献求助10
2秒前
2秒前
CP完成签到,获得积分10
2秒前
chenxilulu完成签到,获得积分10
3秒前
英俊的铭应助天真豪采纳,获得10
3秒前
伯赏人杰完成签到,获得积分10
4秒前
w2503完成签到,获得积分10
5秒前
5秒前
阿明完成签到,获得积分10
6秒前
趴趴熊发布了新的文献求助10
6秒前
qingfeng完成签到,获得积分10
6秒前
科目三应助huxiao采纳,获得10
6秒前
liang完成签到,获得积分10
6秒前
Cherish完成签到,获得积分10
7秒前
踏实世界完成签到,获得积分10
8秒前
姜小强SCI发布了新的文献求助10
9秒前
xzz发布了新的文献求助10
9秒前
10秒前
183完成签到,获得积分20
10秒前
是我呀小夏完成签到 ,获得积分10
10秒前
lyre发布了新的文献求助10
11秒前
weixiaobai完成签到,获得积分10
11秒前
爱吃奶油蛋挞的快乐人完成签到,获得积分10
13秒前
13秒前
Jasper应助单纯的奇异果采纳,获得10
14秒前
李健的小迷弟应助趴趴熊采纳,获得10
14秒前
和谐的映梦完成签到,获得积分10
15秒前
15秒前
1033sry完成签到,获得积分10
15秒前
路人丨安完成签到,获得积分10
15秒前
无问西东完成签到,获得积分10
16秒前
16秒前
bwx完成签到,获得积分10
17秒前
ls完成签到,获得积分10
17秒前
搜集达人应助123采纳,获得10
17秒前
高分求助中
The three stars each : the Astrolabes and related texts 1070
Manual of Clinical Microbiology, 4 Volume Set (ASM Books) 13th Edition 1000
Boris Pesce - Gli impiegati della Fiat dal 1955 al 1999 un percorso nella memoria 500
[Lambert-Eaton syndrome without calcium channel autoantibodies] 500
少脉山油柑叶的化学成分研究 500
Recherches Ethnographiques sue les Yao dans la Chine du Sud 500
Aspect and Predication: The Semantics of Argument Structure 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2401626
求助须知:如何正确求助?哪些是违规求助? 2101144
关于积分的说明 5297835
捐赠科研通 1828783
什么是DOI,文献DOI怎么找? 911554
版权声明 560333
科研通“疑难数据库(出版商)”最低求助积分说明 487293