Assessing the persistence of chalcogen bonds in solution with neural network potentials

硫族元素 化学物理 分子间力 非共价相互作用 超分子化学 化学 计算化学 单独一对 共价键 密度泛函理论 分子 从头算 氢键 结晶学 有机化学
作者
Veronika Jurásková,Frédéric Célerse,Rubén Laplaza,Clémence Corminbœuf
出处
期刊:Journal of Chemical Physics [American Institute of Physics]
卷期号:156 (15): 154112-154112 被引量:14
标识
DOI:10.1063/5.0085153
摘要

Non-covalent bonding patterns are commonly harvested as a design principle in the field of catalysis, supramolecular chemistry, and functional materials to name a few. Yet, their computational description generally neglects finite temperature and environment effects, which promote competing interactions and alter their static gas-phase properties. Recently, neural network potentials (NNPs) trained on density functional theory (DFT) data have become increasingly popular to simulate molecular phenomena in condensed phase with an accuracy comparable to ab initio methods. To date, most applications have centered on solid-state materials or fairly simple molecules made of a limited number of elements. Herein, we focus on the persistence and strength of chalcogen bonds involving a benzotelluradiazole in condensed phase. While the tellurium-containing heteroaromatic molecules are known to exhibit pronounced interactions with anions and lone pairs of different atoms, the relevance of competing intermolecular interactions, notably with the solvent, is complicated to monitor experimentally but also challenging to model at an accurate electronic structure level. Here, we train direct and baselined NNPs to reproduce hybrid DFT energies and forces in order to identify what the most prevalent non-covalent interactions occurring in a solute-Cl−–THF mixture are. The simulations in explicit solvent highlight the clear competition with chalcogen bonds formed with the solvent and the short-range directionality of the interaction with direct consequences for the molecular properties in the solution. The comparison with other potentials (e.g., AMOEBA, direct NNP, and continuum solvent model) also demonstrates that baselined NNPs offer a reliable picture of the non-covalent interaction interplay occurring in solution.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
rhrhn发布了新的文献求助10
1秒前
SGLY完成签到,获得积分10
1秒前
季博常完成签到,获得积分10
2秒前
感性的剑愁完成签到,获得积分10
3秒前
haohao完成签到,获得积分10
3秒前
李霞客完成签到,获得积分10
3秒前
沉静念烟完成签到,获得积分10
3秒前
lzj001983完成签到,获得积分10
3秒前
3秒前
JinGN完成签到,获得积分10
3秒前
QW111完成签到,获得积分10
4秒前
4秒前
5秒前
小太阳完成签到,获得积分10
6秒前
小马完成签到,获得积分10
6秒前
mzm完成签到,获得积分10
7秒前
PPSlu完成签到,获得积分10
7秒前
111完成签到,获得积分10
7秒前
不回首完成签到 ,获得积分10
8秒前
求助人员发布了新的文献求助30
8秒前
思绪摸摸头完成签到 ,获得积分10
9秒前
9秒前
勤恳雅莉应助Maestro_S采纳,获得50
9秒前
10秒前
寒冷的月亮完成签到,获得积分10
10秒前
melody完成签到 ,获得积分10
10秒前
清秀的远望完成签到,获得积分10
11秒前
皓首穷经发布了新的文献求助10
11秒前
眯眯眼的以蕊完成签到,获得积分10
12秒前
12秒前
13秒前
ywindm完成签到,获得积分10
14秒前
苗儿完成签到,获得积分10
14秒前
zjy147完成签到,获得积分10
14秒前
15秒前
15秒前
yang完成签到,获得积分10
16秒前
16秒前
16秒前
漂泊完成签到,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5555210
求助须知:如何正确求助?哪些是违规求助? 4639922
关于积分的说明 14657559
捐赠科研通 4581878
什么是DOI,文献DOI怎么找? 2513000
邀请新用户注册赠送积分活动 1487691
关于科研通互助平台的介绍 1458726