Dual Windows Are Significant: Learning from Mediastinal Window and Focusing on Lung Window

窗口(计算) 计算机科学 滑动窗口协议 人工智能 模式识别(心理学) 医学 内科学 操作系统
作者
Qiuli Wang,Xin Tan,Chen Liu
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2206.03803
摘要

Since the pandemic of COVID-19, several deep learning methods were proposed to analyze the chest Computed Tomography (CT) for diagnosis. In the current situation, the disease course classification is significant for medical personnel to decide the treatment. Most previous deep-learning-based methods extract features observed from the lung window. However, it has been proved that some appearances related to diagnosis can be observed better from the mediastinal window rather than the lung window, e.g., the pulmonary consolidation happens more in severe symptoms. In this paper, we propose a novel Dual Window RCNN Network (DWRNet), which mainly learns the distinctive features from the successive mediastinal window. Regarding the features extracted from the lung window, we introduce the Lung Window Attention Block (LWA Block) to pay additional attention to them for enhancing the mediastinal-window features. Moreover, instead of picking up specific slices from the whole CT slices, we use a Recurrent CNN and analyze successive slices as videos. Experimental results show that the fused and representative features improve the predictions of disease course by reaching the accuracy of 90.57%, against the baseline with an accuracy of 84.86%. Ablation studies demonstrate that combined dual window features are more efficient than lung-window features alone, while paying attention to lung-window features can improve the model's stability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xinl518发布了新的文献求助20
1秒前
科研通AI6应助科研求助111采纳,获得10
2秒前
2秒前
小马甲应助小鹅采纳,获得10
2秒前
happiness完成签到 ,获得积分10
3秒前
自渡完成签到 ,获得积分10
4秒前
星辰大海应助杀猪匠采纳,获得10
4秒前
鲤鱼新儿发布了新的文献求助50
4秒前
5秒前
Owen应助宝宝烤面包采纳,获得10
5秒前
6秒前
John完成签到 ,获得积分10
8秒前
8秒前
鱼丸发布了新的文献求助10
8秒前
9秒前
善学以致用应助琳琳采纳,获得10
10秒前
小小发布了新的文献求助10
10秒前
10秒前
yourenpkma123发布了新的文献求助20
11秒前
Cathay发布了新的文献求助30
13秒前
wpy发布了新的文献求助10
14秒前
14秒前
good_lucky完成签到,获得积分10
15秒前
Jasper应助程笑笑采纳,获得10
15秒前
15秒前
15秒前
16秒前
康帅傅完成签到,获得积分10
16秒前
16秒前
明天见完成签到,获得积分10
16秒前
KirinLee麒麟完成签到 ,获得积分10
18秒前
隐形曼青应助马子婷采纳,获得10
18秒前
st发布了新的文献求助10
19秒前
miracle完成签到,获得积分10
19秒前
19秒前
lzk完成签到,获得积分10
20秒前
DT发布了新的文献求助10
20秒前
yueshao应助大方小白采纳,获得10
20秒前
20秒前
赘婿应助端庄醉山采纳,获得10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
A Modern Guide to the Economics of Crime 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5272536
求助须知:如何正确求助?哪些是违规求助? 4429759
关于积分的说明 13789897
捐赠科研通 4308272
什么是DOI,文献DOI怎么找? 2364084
邀请新用户注册赠送积分活动 1359709
关于科研通互助平台的介绍 1322750