An Improved Genetic Algorithm for the Distributed and Flexible Job-shop Scheduling problem

作业车间调度 计算机科学 流水车间调度 分布式计算 公平份额计划 调度(生产过程) 作业调度程序 单调速率调度 动态优先级调度 数学优化 两级调度 渡线 地铁列车时刻表 云计算 数学 人工智能 操作系统
作者
Luigi De Giovanni,Ferdinando Pezzella
出处
期刊:European Journal of Operational Research [Elsevier BV]
卷期号:200 (2): 395-408 被引量:295
标识
DOI:10.1016/j.ejor.2009.01.008
摘要

The Distributed and Flexible Job-shop Scheduling problem (DFJS) considers the scheduling of distributed manufacturing environments, where jobs are processed by a system of several Flexible Manufacturing Units (FMUs). Distributed scheduling problems deal with the assignment of jobs to FMUs and with determining the scheduling of each FMU, in terms of assignment of each job operation to one of the machines able to work it (job-routing flexibility) and sequence of operations on each machine. The objective is to minimize the global makespan over all the FMUs. This paper proposes an Improved Genetic Algorithm to solve the Distributed and Flexible Job-shop Scheduling problem. With respect to the solution representation for non-distributed job-shop scheduling, gene encoding is extended to include information on job-to-FMU assignment, and a greedy decoding procedure exploits flexibility and determines the job routings. Besides traditional crossover and mutation operators, a new local search based operator is used to improve available solutions by refining the most promising individuals of each generation. The proposed approach has been compared with other algorithms for distributed scheduling and evaluated with satisfactory results on a large set of distributed-and-flexible scheduling problems derived from classical job-shop scheduling benchmarks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
狼主完成签到 ,获得积分10
2秒前
yeye发布了新的文献求助10
2秒前
荣耀应助阳光的夏槐采纳,获得10
2秒前
lxy发布了新的文献求助10
2秒前
3秒前
lf完成签到,获得积分10
3秒前
善学以致用应助1459采纳,获得10
3秒前
SYLH应助幽默柚子采纳,获得20
3秒前
kei发布了新的文献求助10
4秒前
射天狼发布了新的文献求助10
4秒前
科研通AI5应助语上采纳,获得10
4秒前
mgg发布了新的文献求助10
6秒前
SYLH应助zwy109采纳,获得10
7秒前
达进完成签到,获得积分10
7秒前
8秒前
淡淡书竹发布了新的文献求助10
9秒前
9秒前
大秦发布了新的文献求助10
10秒前
11秒前
wang完成签到,获得积分10
11秒前
大聪明完成签到,获得积分10
11秒前
11秒前
活力的镜子完成签到,获得积分10
12秒前
天晴肖完成签到,获得积分10
13秒前
13秒前
13秒前
ok完成签到,获得积分10
14秒前
外向千易发布了新的文献求助10
14秒前
阿宅完成签到,获得积分10
16秒前
dfgdf发布了新的文献求助10
16秒前
16秒前
17秒前
hdwxn13完成签到,获得积分10
17秒前
kei完成签到,获得积分10
18秒前
lxy完成签到,获得积分10
18秒前
19秒前
杨亦菲发布了新的文献求助10
20秒前
20秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Visceral obesity is associated with clinical and inflammatory features of asthma: A prospective cohort study 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3838640
求助须知:如何正确求助?哪些是违规求助? 3380982
关于积分的说明 10516786
捐赠科研通 3100592
什么是DOI,文献DOI怎么找? 1707614
邀请新用户注册赠送积分活动 821803
科研通“疑难数据库(出版商)”最低求助积分说明 772980