Rating Exposure Control Using Bayesian Decision Analysis

贝叶斯概率 百分位 统计 后验概率 决策规则 概率分布 样品(材料) 数学 运筹学 计算机科学 色谱法 化学
作者
Paul C. Hewett,Perry W. Logan,John Mulhausen,Gurumurthy Ramachandran,Sudipto Banerjee
出处
期刊:Journal of Occupational and Environmental Hygiene [Taylor & Francis]
卷期号:3 (10): 568-581 被引量:81
标识
DOI:10.1080/15459620600914641
摘要

A model is presented for applying Bayesian statistical techniques to the problem of determining, from the usual limited number of exposure measurements, whether the exposure profile for a similar exposure group can be considered a Category 0, 1, 2, 3, or 4 exposure. The categories were adapted from the AIHA exposure category scheme and refer to (0) negligible or trivial exposure (i.e., the true X 0.95 < 1%OEL), (1) highly controlled (i.e., X 0.95 < 10%OEL), (2) well controlled (i.e., X 0.95 < 50%OEL), (3) controlled (i.e., X 0.95 < 100%OEL), or (4) poorly controlled (i.e., X0.95 > 1%OEL) exposures. Unlike conventional statistical methods applied to exposure data, Bayesian statistical techniques can be adapted to explicitly take into account professional judgment or other sources of information. The analysis output consists of a distribution (i.e., set) of decision probabilities: e.g., 1%, 80%, 12%, 5%, and 2% probability that the exposure profile is a Category 0, 1, 2, 3, or 4 exposure. By inspection of these decision probabilities, rather than the often difficult to interpret point estimates (e.g., the sample 95th percentile exposure) and confidence intervals, a risk manager can be better positioned to arrive at an effective (i.e., correct) and efficient decision. Bayesian decision methods are based on the concepts of prior, likelihood, and posterior distributions of decision probabilities. The prior decision distribution represents what an industrial hygienist knows about this type of operation, using professional judgment; company, industry, or trade organization experience; historical or surrogate exposure data; or exposure modeling predictions. The likelihood decision distribution represents the decision probabilities based on an analysis of only the current data. The posterior decision distribution is derived by mathematically combining the functions underlying the prior and likelihood decision distributions, and represents the final decision probabilities. Advantages of Bayesian decision analysis include: (a) decision probabilities are easier to understand by risk managers and employees; (b) prior data, professional judgment, or modeling information can be objectively incorporated into the decision-making process; (c) decisions can be made with greater certainty; (d) the decision analysis can be constrained to a more realistic “parameter space” (i.e., the range of plausible values for the true geometric mean and geometric standard deviation); and (e) fewer measurements are necessary whenever the prior distribution is well defined and the process is fairly stable. Furthermore, Bayesian decision analysis provides an obvious feedback mechanism that can be used by an industrial hygienist to improve professional judgment. For example, if the likelihood decision distribution is inconsistent with the prior decision distribution then it is likely that either a significant process change has occurred or the industrial hygienist's initial judgment was incorrect. In either case, the industrial hygienist should readjust his judgment regarding this operation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ander完成签到 ,获得积分10
1秒前
myduty完成签到 ,获得积分10
1秒前
lilia完成签到,获得积分10
1秒前
lamer完成签到,获得积分10
6秒前
hiipaige完成签到,获得积分10
7秒前
尔信完成签到 ,获得积分10
7秒前
serenity711完成签到 ,获得积分10
8秒前
香蕉觅云应助wr采纳,获得10
8秒前
123456完成签到,获得积分10
8秒前
fang完成签到,获得积分10
9秒前
hdbys完成签到,获得积分10
10秒前
12秒前
奋斗跳跳糖完成签到,获得积分10
13秒前
简简单单完成签到 ,获得积分10
16秒前
搜集达人应助Justtry采纳,获得10
16秒前
yingying完成签到 ,获得积分10
17秒前
小恐龙飞飞完成签到 ,获得积分10
18秒前
威武冷雪完成签到,获得积分10
18秒前
发发旦旦发布了新的文献求助10
19秒前
花生完成签到,获得积分10
22秒前
23秒前
24秒前
Liziqi823完成签到,获得积分10
25秒前
天道酬勤完成签到,获得积分10
25秒前
26秒前
liuqi完成签到 ,获得积分10
27秒前
27秒前
熊巴巴完成签到 ,获得积分10
28秒前
28秒前
小超人完成签到 ,获得积分0
28秒前
不爱科研完成签到 ,获得积分10
29秒前
RaynorHank发布了新的文献求助10
29秒前
wr发布了新的文献求助10
30秒前
31秒前
宝宝发布了新的文献求助10
32秒前
shiyang2014完成签到,获得积分10
33秒前
35秒前
我思故我在完成签到,获得积分0
35秒前
不安的晓灵完成签到 ,获得积分10
36秒前
科研执修完成签到,获得积分10
37秒前
高分求助中
传播真理奋斗不息——中共中央编译局成立50周年纪念文集(1953—2003) 700
Technologies supporting mass customization of apparel: A pilot project 600
武汉作战 石川达三 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3811753
求助须知:如何正确求助?哪些是违规求助? 3356021
关于积分的说明 10379250
捐赠科研通 3072995
什么是DOI,文献DOI怎么找? 1688201
邀请新用户注册赠送积分活动 811860
科研通“疑难数据库(出版商)”最低求助积分说明 766893