多向拉希模型
项目反应理论
先验与后验
差异项目功能
最大似然
二进制数
统计
心理学
数学
计量经济学
计算机科学
心理测量学
算术
认识论
哲学
作者
James S. Roberts,John R. Donoghue,James E. Laughlin
标识
DOI:10.1177/01466216000241001
摘要
The generalized graded unfolding model (GGUM) is developed. This model allows for either binary or graded responses and generalizes previous item response models for unfolding in two useful ways. First, it implements a discrimination parameter that varies across items, which allows items to discriminate among respondents in different ways. Second, the GGUM permits response category threshold parameters to vary across items. Amarginal maximum likelihood algorithm is implemented to estimate GGUM item parameters, whereas person parameters are derived from an expected a posteriori technique. The applicability of the GGUM to common attitude testing situations is illustrated with real data on student attitudes toward abortion.
科研通智能强力驱动
Strongly Powered by AbleSci AI