亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Dynamic Contrastive Distillation for Image-Text Retrieval

计算机科学 人工智能 情态动词 公制(单位) 机器学习 任务(项目管理) 蒸馏 延迟(音频) 电信 运营管理 化学 管理 有机化学 高分子化学 经济
作者
Jun Rao,Liang Ding,Shuhan Qi,Meng Fang,Yang Liu,Li Shen,Dacheng Tao
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:25: 8383-8395 被引量:26
标识
DOI:10.1109/tmm.2023.3236837
摘要

Although the vision-and-language pretraining (VLP) equipped cross-modal image-text retrieval (ITR) has achieved remarkable progress in the past two years, it suffers from a major drawback: the ever-increasing size of VLP models restrict its deployment to real-world search scenarios (where the high latency is unacceptable). To alleviate this problem, we present a novel plug-in dynamic contrastive distillation (DCD) framework to compress the large VLP models for the ITR task. Technically, we face the following two challenges: 1) the typical uni-modal metric learning approach is difficult to directly apply to cross-modal task, due to the limited GPU memory to optimize too many negative samples during handling cross-modal fusion features. 2) it is inefficient to static optimize the student network from different hard samples, which have different effects on distillation learning and student network optimization. We try to overcome these challenges from two points. First, to achieve multi-modal contrastive learning, and balance the training costs and effects, we propose to use a teacher network to estimate the difficult samples for students, making the students absorb the powerful knowledge from pre-trained teachers, and master the knowledge from hard samples. Second, to dynamic learn from hard sample pairs, we propose dynamic distillation to dynamically learn samples of different difficulties, from the perspective of better balancing the difficulty of knowledge and students' self-learning ability. We successfully apply our proposed DCD strategy on two state-of-the-art vision-language pretrained models, i.e. ViLT and METER. Extensive experiments on MS-COCO and Flickr 30 K benchmarks show the effectiveness and efficiency of our DCD framework. Encouragingly, we can speed up the inference at least 129 × compared to the existing ITR models. We further provide in-depth analyses and discussions that explain where the performance improvement comes from. We hope our work can shed light on other tasks that require distillation and contrastive learning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cy0824完成签到 ,获得积分10
5秒前
andrele应助科研通管家采纳,获得10
14秒前
无极微光应助科研通管家采纳,获得20
14秒前
福斯卡完成签到 ,获得积分10
39秒前
1分钟前
朴实剑通完成签到 ,获得积分10
1分钟前
南瓜发布了新的文献求助10
1分钟前
星辰大海应助森林木采纳,获得10
1分钟前
南瓜完成签到,获得积分20
1分钟前
2分钟前
2分钟前
起风了1995发布了新的文献求助10
2分钟前
森林木发布了新的文献求助10
2分钟前
2分钟前
科研通AI6.2应助小章呀采纳,获得30
2分钟前
起风了1995完成签到,获得积分10
2分钟前
3分钟前
pyhsicsyyc发布了新的文献求助10
3分钟前
整齐豆芽完成签到 ,获得积分10
3分钟前
无花果应助Lucky采纳,获得50
3分钟前
Mujeeb完成签到 ,获得积分10
3分钟前
4分钟前
4分钟前
4分钟前
Lucky发布了新的文献求助50
4分钟前
gszy1975完成签到,获得积分10
4分钟前
白小黑发布了新的文献求助10
4分钟前
光轮2000完成签到 ,获得积分10
4分钟前
Lucky完成签到,获得积分10
4分钟前
明白放弃完成签到,获得积分10
5分钟前
5分钟前
5分钟前
小章呀发布了新的文献求助30
5分钟前
liliAnh完成签到 ,获得积分10
5分钟前
5分钟前
清新的宛丝完成签到,获得积分10
5分钟前
杨自强完成签到,获得积分10
5分钟前
caca完成签到,获得积分0
6分钟前
杨杨发布了新的文献求助30
6分钟前
wmz完成签到 ,获得积分10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Operational Bulk Evaporation Duct Model for MORIAH Version 1.2 1200
Signals, Systems, and Signal Processing 880
Yangtze Reminiscences. Some Notes And Recollections Of Service With The China Navigation Company Ltd., 1925-1939 800
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Discrete-Time Signals and Systems 510
Clinical Efficacy of the Hydrogel Patch Containing Loxoprofen Sodium (LX-A) on Osteoarthritis of the Knee-A Randomized, Open Label Clinical Study with Ketoprofen Patch-(Phase III Therapeutic Confirmatory Study) 410
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5845261
求助须知:如何正确求助?哪些是违规求助? 6200658
关于积分的说明 15616290
捐赠科研通 4962063
什么是DOI,文献DOI怎么找? 2675263
邀请新用户注册赠送积分活动 1620017
关于科研通互助平台的介绍 1575307