化学
钳子运动
催化作用
钳形配体
配体(生物化学)
镁
芳构化
过渡金属
均相催化
主组元素
组合化学
药物化学
有机化学
生物化学
受体
作者
Yaoyu Liang,Jie Luo,Yael Diskin‐Posner,David Milstein
摘要
Utilization of main-group metals as alternatives to transition metals in homogeneous catalysis has become a hot research area in recent years. However, their application in catalytic hydrogenation is less common due to the difficulty in heterolytic cleavage of the H-H bond. Employing aromatization/de-aromatization metal-ligand cooperation (MLC) highly enhances the H2 activation process, offering an efficient approach for the hydrogenation of unsaturated molecules catalyzed by main-group metals. Herein, we report a series of new magnesium pincer complexes prepared using PNNH-type pincer ligands. The complexes were characterized by NMR and X-ray single-crystal diffraction. Reversible activation of H2 and N-H bonds by MLC employing these pincer complexes was developed. Using the new magnesium complexes, homogeneously catalyzed hydrogenation of aldimines and ketimines was achieved, affording secondary amines in excellent yields. Control experiments and DFT studies reveal that a pathway involving MLC is favorable for the hydrogenation reactions. Moreover, the efficient catalysis was extended to the selective hydrogenation of quinolines and other N-heteroarenes, presenting the first example of hydrogenation of N-heteroarenes homogeneously catalyzed by early main-group metal complexes. This study provides a new strategy for hydrogenation of C═N bonds catalyzed by magnesium compounds and enriches the research of main-group metal catalysis.
科研通智能强力驱动
Strongly Powered by AbleSci AI