Clustered Federated Learning in Heterogeneous Environment

聚类分析 计算机科学 共识聚类 数据挖掘 分歧(语言学) 星团(航天器) 相关聚类 CURE数据聚类算法 机器学习 人工智能 语言学 哲学 程序设计语言
作者
Yihan Yan,Xiaojun Tong,Shen Wang
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (9): 12796-12809 被引量:33
标识
DOI:10.1109/tnnls.2023.3264740
摘要

Federated learning (FL) is a distributed machine learning framework that allows resource-constrained clients to train a global model jointly without compromising data privacy. Although FL is widely adopted, high degrees of systems and statistical heterogeneity are still two main challenges, which leads to potential divergence and nonconvergence. Clustered FL handles the problem of statistical heterogeneity straightly by discovering the geometric structure of clients with various data generation distributions and getting multiple global models. The number of clusters contains prior knowledge about the clustering structure and has a significant impact on the performance of clustered FL methods. Existing clustered FL methods are inadequate for adaptively inferring the optimal number of clusters in environments with high systems' heterogeneity. To address this issue, we propose an iterative clustered FL (ICFL) framework in which the server dynamically discovers the clustering structure by successively performing incremental clustering and clustering in one iteration. We focus on the average connectivity within each cluster and give incremental clustering and clustering methods that are compatible with ICFL based on mathematical analysis. We evaluate ICFL in experiments on high degrees of systems and statistical heterogeneity, multiple datasets, and convex and nonconvex objectives. Experimental results verify our theoretical analysis and show that ICFL outperforms several clustered FL baseline methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_ZGRvon完成签到,获得积分0
1秒前
happyboy2008完成签到 ,获得积分10
3秒前
科研通AI6.1应助Knight采纳,获得10
3秒前
知北完成签到,获得积分10
5秒前
冰魄落叶完成签到,获得积分10
6秒前
6秒前
kreatal完成签到,获得积分10
7秒前
skmaple完成签到,获得积分10
9秒前
新手上路完成签到,获得积分10
12秒前
今后应助琉璃采纳,获得10
12秒前
V——V5555完成签到 ,获得积分10
13秒前
13秒前
13秒前
菲菲完成签到 ,获得积分10
14秒前
风秋杨发布了新的文献求助20
14秒前
why完成签到 ,获得积分10
17秒前
kingsly完成签到 ,获得积分10
17秒前
丰富焦应助敏感的海雪采纳,获得10
18秒前
Alanni完成签到 ,获得积分10
18秒前
甜蜜高丽完成签到 ,获得积分10
20秒前
醉熏的水绿完成签到 ,获得积分10
21秒前
zoes发布了新的文献求助20
22秒前
汉堡包应助zy采纳,获得10
24秒前
24秒前
搜集达人应助小侯采纳,获得10
26秒前
27秒前
AJ0816关注了科研通微信公众号
29秒前
centlay发布了新的文献求助10
31秒前
33秒前
传统的寒凝完成签到,获得积分10
35秒前
35秒前
36秒前
研友_Ze00Vn发布了新的文献求助10
40秒前
41秒前
李爱国应助科研通管家采纳,获得10
41秒前
41秒前
44秒前
sanwan完成签到,获得积分10
44秒前
goblue完成签到,获得积分10
45秒前
45秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Campbell Walsh Wein Urology 3-Volume Set 12th Edition 200
Three-dimensional virtual model for robot-assisted partial nephrectomy in totally endophytic renal tumors: a propensity-score matching analysis with a control group 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5867374
求助须知:如何正确求助?哪些是违规求助? 6432386
关于积分的说明 15656438
捐赠科研通 4982552
什么是DOI,文献DOI怎么找? 2687040
邀请新用户注册赠送积分活动 1629872
关于科研通互助平台的介绍 1587869