iWarpGAN: Disentangling Identity and Style to Generate Synthetic Iris Images

IRIS(生物传感器) 风格(视觉艺术) 计算机科学 身份(音乐) 人工智能 虹膜识别 计算机视觉 模式识别(心理学) 生物识别 艺术 美学 视觉艺术
作者
Shivangi Yadav,Arun Ross
标识
DOI:10.1109/ijcb57857.2023.10449250
摘要

Generative Adversarial Networks (GANs) have shown success in approximating complex distributions for synthetic image generation. However, current GAN-based methods for generating biometric images, such as iris, have certain limitations: (a) the synthetic images often closely resemble images in the training dataset; (b) the generated images lack diversity in terms of the number of unique identities represented in them; and (c) it is difficult to generate multiple images pertaining to the same identity. To overcome these issues, we propose iWarpGAN that disentangles identity and style in the context of the iris modality by using two transformation pathways: Identity Transformation Pathway to generate unique identities from the training set, and Style Transformation Pathway to extract the style code from a reference image and output an iris image using this style. By concatenating the transformed identity code and reference style code, iWarpGAN generates iris images with both inter- and intra-class variations. The efficacy of the proposed method in generating such iris Deep-Fakes is evaluated both qualitatively and quantitatively using ISO/IEC 29794-6 Standard Quality Metrics and the Ver-iEye iris matcher. Further, the utility of the synthetically generated images is demonstrated by improving the performance of deep learning based iris matchers that augment synthetic data with real data during the training process.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
forever完成签到,获得积分10
刚刚
樱桃完成签到,获得积分10
刚刚
刚刚
LQ发布了新的文献求助10
1秒前
1秒前
1秒前
李咸咸123完成签到,获得积分10
1秒前
MOON完成签到,获得积分10
2秒前
淇奥完成签到 ,获得积分10
2秒前
2秒前
泶1完成签到,获得积分10
2秒前
3秒前
4秒前
4秒前
凌雪柯完成签到 ,获得积分10
5秒前
5秒前
5秒前
5秒前
xinyuf发布了新的文献求助10
5秒前
漂亮的念双完成签到,获得积分10
6秒前
orixero应助神勇的板栗采纳,获得10
6秒前
SSS发布了新的文献求助10
6秒前
6秒前
6秒前
LiliHe发布了新的文献求助10
6秒前
enchanted完成签到,获得积分10
6秒前
舒服的月饼完成签到,获得积分10
6秒前
mohy发布了新的文献求助10
7秒前
积极的誉完成签到,获得积分10
7秒前
勤恳兔子完成签到,获得积分10
8秒前
8秒前
852应助年轻秀采纳,获得10
8秒前
文静的天蓝完成签到,获得积分10
8秒前
酶没美镁完成签到,获得积分10
9秒前
9秒前
呼呼呼完成签到,获得积分10
10秒前
123完成签到,获得积分10
10秒前
10秒前
杪123发布了新的文献求助10
10秒前
AHR完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
First Farmers: The Origins of Agricultural Societies, 2nd Edition 500
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
The Secrets of Successful Product Launches 300
The Rise & Fall of Classical Legal Thought 260
Synthesis and characterisation of ZSM-5/SBA-15 composite material 200
Encyclopedia of Renewable Energy, Sustainability and the Environment Volume 1: Sustainable Development and Bioenergy Solutions 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4346036
求助须知:如何正确求助?哪些是违规求助? 3852487
关于积分的说明 12024840
捐赠科研通 3493998
什么是DOI,文献DOI怎么找? 1917202
邀请新用户注册赠送积分活动 960187
科研通“疑难数据库(出版商)”最低求助积分说明 860172