Screening of the Antagonistic Activity of Potential Bisphenol A Alternatives toward the Androgen Receptor Using Machine Learning and Molecular Dynamics Simulation

雄激素受体 双酚A 分子动力学 分子模型 化学 计算机科学 虚拟筛选 双酚S 内分泌干扰物 计算生物学 生化工程 生物系统 生物 内分泌系统 生物化学 计算化学 遗传学 工程类 有机化学 环氧树脂 癌症 激素 前列腺癌
作者
Zeguo Yang,Ling Wang,Ying Yang,Xudi Pang,Yuzhen Sun,Yong Liang,Huiming Cao
出处
期刊:Environmental Science & Technology [American Chemical Society]
卷期号:58 (6): 2817-2829 被引量:13
标识
DOI:10.1021/acs.est.3c09779
摘要

Over the past few decades, extensive research has indicated that exposure to bisphenol A (BPA) increases the health risks in humans. Toxicological studies have demonstrated that BPA can bind to the androgen receptor (AR), resulting in endocrine-disrupting effects. In recent investigations, many alternatives to BPA have been detected in various environmental media as major pollutants. However, related experimental evaluations of BPA alternatives have not been systematically implemented for the assessment of chemical safety and the effects of structural characteristics on the antagonistic activity of the AR. To promote the green development of BPA alternatives, high-throughput toxicological screening is fundamental for prioritizing chemical tests. Therefore, we proposed a hybrid deep learning architecture that combines molecular descriptors and molecular graphs to predict AR antagonistic activity. Compared to previous models, this hybrid architecture can extract substantial chemical information from various molecular representations to improve the model's generalization ability for BPA alternatives. Our predictions suggest that lignin-derivable bisguaiacols, as alternatives to BPA, are likely to be nonantagonist for AR compared to bisphenol analogues. Additionally, molecular dynamics (MD) simulations identified the dihydrotestosterone-bound pocket, rather than the surface, as the major binding site of bisphenol analogues. The conformational changes of key helix H12 from an agonistic to an antagonistic conformation can be evaluated qualitatively by accelerated MD simulations to explain the underlying mechanism. Overall, our computational study is helpful for toxicological screening of BPA alternatives and the design of environmentally friendly BPA alternatives.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
swinging完成签到,获得积分20
1秒前
以菱完成签到 ,获得积分10
1秒前
栗子完成签到,获得积分10
2秒前
3秒前
4秒前
wangfang0228完成签到 ,获得积分10
4秒前
4秒前
llll完成签到 ,获得积分0
4秒前
111完成签到,获得积分10
5秒前
niekyang完成签到 ,获得积分10
5秒前
量子星尘发布了新的文献求助10
5秒前
高兴莆完成签到 ,获得积分10
6秒前
6秒前
8秒前
yihuifa完成签到 ,获得积分10
8秒前
tree完成签到,获得积分10
8秒前
一口袋的风完成签到,获得积分10
9秒前
doujiang完成签到,获得积分10
10秒前
锅包又完成签到 ,获得积分10
11秒前
SUN完成签到 ,获得积分10
12秒前
科研通AI2S应助毅诚菌采纳,获得10
12秒前
一顿要吃三头牛完成签到,获得积分10
15秒前
机智毛豆完成签到,获得积分10
15秒前
可爱的函函应助小新采纳,获得10
17秒前
zx666发布了新的文献求助10
18秒前
18秒前
20秒前
晚风挽清欢完成签到 ,获得积分10
20秒前
21秒前
pyy0完成签到,获得积分10
23秒前
YXYWZMSZ发布了新的文献求助10
25秒前
25秒前
积极冷霜完成签到,获得积分10
25秒前
我是老大应助淅川采纳,获得10
26秒前
好运发布了新的文献求助10
28秒前
28秒前
28秒前
28秒前
量子星尘发布了新的文献求助10
28秒前
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5796959
求助须知:如何正确求助?哪些是违规求助? 5781136
关于积分的说明 15493567
捐赠科研通 4923939
什么是DOI,文献DOI怎么找? 2650559
邀请新用户注册赠送积分活动 1597853
关于科研通互助平台的介绍 1552542