Screening of the Antagonistic Activity of Potential Bisphenol A Alternatives toward the Androgen Receptor Using Machine Learning and Molecular Dynamics Simulation

雄激素受体 双酚A 分子动力学 分子模型 化学 计算机科学 虚拟筛选 双酚S 内分泌干扰物 计算生物学 生化工程 生物系统 生物 内分泌系统 生物化学 计算化学 遗传学 工程类 有机化学 前列腺癌 癌症 激素 环氧树脂
作者
Zeguo Yang,Ling Wang,Ying Yang,Xudi Pang,Yuzhen Sun,Yong Liang,Huiming Cao
出处
期刊:Environmental Science & Technology [American Chemical Society]
卷期号:58 (6): 2817-2829 被引量:5
标识
DOI:10.1021/acs.est.3c09779
摘要

Over the past few decades, extensive research has indicated that exposure to bisphenol A (BPA) increases the health risks in humans. Toxicological studies have demonstrated that BPA can bind to the androgen receptor (AR), resulting in endocrine-disrupting effects. In recent investigations, many alternatives to BPA have been detected in various environmental media as major pollutants. However, related experimental evaluations of BPA alternatives have not been systematically implemented for the assessment of chemical safety and the effects of structural characteristics on the antagonistic activity of the AR. To promote the green development of BPA alternatives, high-throughput toxicological screening is fundamental for prioritizing chemical tests. Therefore, we proposed a hybrid deep learning architecture that combines molecular descriptors and molecular graphs to predict AR antagonistic activity. Compared to previous models, this hybrid architecture can extract substantial chemical information from various molecular representations to improve the model's generalization ability for BPA alternatives. Our predictions suggest that lignin-derivable bisguaiacols, as alternatives to BPA, are likely to be nonantagonist for AR compared to bisphenol analogues. Additionally, molecular dynamics (MD) simulations identified the dihydrotestosterone-bound pocket, rather than the surface, as the major binding site of bisphenol analogues. The conformational changes of key helix H12 from an agonistic to an antagonistic conformation can be evaluated qualitatively by accelerated MD simulations to explain the underlying mechanism. Overall, our computational study is helpful for toxicological screening of BPA alternatives and the design of environmentally friendly BPA alternatives.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
今后应助科研通管家采纳,获得10
刚刚
慕青应助科研通管家采纳,获得10
刚刚
彭于晏应助科研通管家采纳,获得10
刚刚
FashionBoy应助科研通管家采纳,获得10
刚刚
科研通AI5应助科研通管家采纳,获得10
刚刚
JamesPei应助科研通管家采纳,获得10
刚刚
共享精神应助科研通管家采纳,获得10
刚刚
科研通AI5应助yongziwu采纳,获得10
刚刚
研友_VZG7GZ应助科研通管家采纳,获得10
刚刚
大模型应助科研通管家采纳,获得10
刚刚
刚刚
刚刚
周粥完成签到,获得积分10
1秒前
HAP发布了新的文献求助10
1秒前
小解同学发布了新的文献求助10
1秒前
开心山芙发布了新的文献求助10
1秒前
1秒前
没有昵称完成签到,获得积分10
1秒前
innocence2000完成签到 ,获得积分10
2秒前
精明玲发布了新的文献求助10
2秒前
隐形曼青应助席半采纳,获得10
2秒前
3秒前
卡卡西应助Dracoon采纳,获得10
3秒前
希冀发布了新的文献求助10
4秒前
dddddd发布了新的文献求助10
4秒前
SYLH应助li采纳,获得10
4秒前
大聪明完成签到,获得积分20
4秒前
4秒前
4秒前
zzz6286发布了新的文献求助10
4秒前
炒酸奶完成签到,获得积分10
4秒前
费静芙发布了新的文献求助40
4秒前
4秒前
Ray完成签到,获得积分10
5秒前
6秒前
牛牛完成签到,获得积分10
6秒前
柒柒完成签到,获得积分10
7秒前
7秒前
SYLH应助shijianxin1000采纳,获得10
7秒前
tana98906完成签到,获得积分10
8秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
材料概论 周达飞 ppt 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3808655
求助须知:如何正确求助?哪些是违规求助? 3353413
关于积分的说明 10365062
捐赠科研通 3069602
什么是DOI,文献DOI怎么找? 1685698
邀请新用户注册赠送积分活动 810656
科研通“疑难数据库(出版商)”最低求助积分说明 766240