Enhancing Positioning in GNSS Denied Environments Based on an Extended Kalman Filter Using Past GNSS Measurements and IMU

全球导航卫星系统应用 惯性测量装置 卡尔曼滤波器 计算机科学 卫星系统 扩展卡尔曼滤波器 传感器融合 惯性导航系统 噪音(视频) 滤波器(信号处理) 全球导航卫星系统增强 全球定位系统 算法 实时计算 惯性参考系 人工智能 计算机视觉 电信 物理 量子力学 图像(数学)
作者
Kaushik A. Iyer,Abhijit Dey,Bing Xu,Nitin Sharma,Li‐Ta Hsu
出处
期刊:IEEE Transactions on Vehicular Technology [Institute of Electrical and Electronics Engineers]
卷期号:73 (6): 7908-7924 被引量:20
标识
DOI:10.1109/tvt.2024.3360076
摘要

Recent urbanization has posed challenges for the global navigation satellite system (GNSS) to provide accurate navigation solutions. This is especially true in GNSS-denied environments, where the clear line of sight (LOS) path between the satellites and receiver is lacking. For such environments, fusion-based techniques relying on external sensors and/or other signals are widely used. However, such external sensors and signals may not be feasible and/or cost-effective every time. To overcome these limitations, this work proposes a system that makes explicit use of past available measurements, under certain assumptions, to generate new synthetic measurements. For this purpose, two functions are proposed in this work: a geometrically decaying series and a linear combination of past measurements. To enhance the overall performance of the system, an inertial measurement unit (IMU) is used as an additional measurement source in the extended Kalman filter (EKF). In addition, an approach to adapt the noise co-variances that support the generation of synthetic measurements is proposed. Furthermore, we derive the optimal gain under specific assumptions for a concrete theoretical understanding of the proposed algorithm. The proposed algorithm is tested and validated through two real-world datasets collected in Hong Kong, one corresponding to a moving vehicle inside a significantly long sea tunnel and another set in a harsh urban area, involving complex trajectories. A detailed analysis of the results has been performed with respect to all the aforementioned contributions. Additionally, the proposed algorithm has been compared with other existing algorithms. Experimental results show that a mean error of about 4 m is attained inside the tunnel, while it is around 4.6 m for the second scenario set in a harsh urban environment.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
缪连虎发布了新的文献求助10
刚刚
下雨了发布了新的文献求助10
刚刚
金长慧完成签到,获得积分20
刚刚
skies完成签到,获得积分10
刚刚
1秒前
drleslie完成签到 ,获得积分10
1秒前
一壶古酒应助Alice_Arendt采纳,获得50
1秒前
ghhhn发布了新的文献求助10
1秒前
Melody完成签到,获得积分10
2秒前
沉默的驳发布了新的文献求助10
2秒前
2秒前
华仔应助unaqvq采纳,获得10
2秒前
CipherSage应助卓一曲采纳,获得10
3秒前
研友_yLpQrn完成签到,获得积分10
3秒前
3秒前
4秒前
4秒前
量子星尘发布了新的文献求助10
6秒前
李爱国应助cc采纳,获得10
6秒前
大湖玩家发布了新的文献求助10
6秒前
红枣完成签到,获得积分10
7秒前
7秒前
yanifang发布了新的文献求助10
8秒前
8秒前
清风朗月发布了新的文献求助10
8秒前
黎明发布了新的文献求助10
8秒前
科目三应助sochiyuen采纳,获得10
9秒前
mistletoe发布了新的文献求助10
9秒前
9秒前
9秒前
下雨了完成签到,获得积分10
10秒前
lllll发布了新的文献求助10
10秒前
10秒前
pl656发布了新的文献求助10
10秒前
11秒前
冷酷男人完成签到,获得积分10
11秒前
宋怀瑾发布了新的文献求助10
12秒前
燕燕完成签到 ,获得积分10
12秒前
大湖玩家完成签到,获得积分10
12秒前
牛牛完成签到 ,获得积分20
12秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5743404
求助须知:如何正确求助?哪些是违规求助? 5413822
关于积分的说明 15347458
捐赠科研通 4884191
什么是DOI,文献DOI怎么找? 2625636
邀请新用户注册赠送积分活动 1574492
关于科研通互助平台的介绍 1531400