Data-driven digital transformation for supply chain carbon neutrality: Insights from cross-sector supply chain

供应链 透明度(行为) 中立 碳中和 业务 产业组织 供应链管理 数字化转型 分析 环境经济学 计算机科学 经济 温室气体 营销 数据科学 计算机安全 生态学 哲学 认识论 万维网 生物
作者
Amine Belhadi,Venkatesh Mani,Sachin Kamble,Mohammad Zoynul Abedin
出处
期刊:International Journal of Production Economics [Elsevier]
卷期号:270: 109178-109178 被引量:40
标识
DOI:10.1016/j.ijpe.2024.109178
摘要

Following the growing pressure on firms and supply chains regarding their environmental impact, carbon neutrality of supply chains is gaining substantial attention among scholars and practitioners. Data-driven digital transformation supports supply chains in achieving higher carbon reduction while improving efficiency and economic performance. However, the conditions under which data-driven digital transformation can provide the desired effect remain unclear due to a lack of empirical evidence. This study aims to address this gap by examining how data-driven digital transformation, enabled by data analytics capabilities, contributes to establishing a win-win situation between carbon and economic performance in the face of several sources of carbon uncertainty through fostering supply chain carbon transparency. Drawing upon the organizational information-processing theory, we posit that the fit between information needs to reduce carbon uncertainties and the information capabilities provided by data-driven digital transformation is critical for enhancing supply chain carbon transparency and balancing supply chains' economic and carbon performance. We examine these relationships using regression tests based on survey data from 437 manufacturing companies from different regions (i.e., Europe, Africa, and Asia). Our results reveal that data analytics capabilities alone cannot enhance supply chain carbon transparency until integrated into a comprehensive business transformation. In that case, carbon transparency would positively mediate overcoming carbon uncertainties and improve the supply chains' carbon and economic performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
充电宝应助周周采纳,获得10
刚刚
1秒前
2秒前
希望天下0贩的0应助小猪采纳,获得30
2秒前
lxy完成签到,获得积分20
2秒前
3秒前
香蕉觅云应助ziutinkei采纳,获得10
4秒前
上好佳发布了新的文献求助10
5秒前
6秒前
8秒前
lxy发布了新的文献求助30
9秒前
香蕉觅云应助牛顿的苹果采纳,获得10
9秒前
无花果应助七七采纳,获得10
10秒前
求文献完成签到,获得积分10
13秒前
13秒前
科研同人发布了新的文献求助10
13秒前
香蕉觅云应助醉熏的月光采纳,获得10
17秒前
过眼云烟完成签到,获得积分10
18秒前
搜集达人应助牛马采纳,获得10
20秒前
adiaodiao发布了新的文献求助10
20秒前
www完成签到,获得积分10
21秒前
21秒前
22秒前
跳跃乘风完成签到,获得积分10
25秒前
Hello应助幸福妙柏采纳,获得10
25秒前
ButterFly完成签到,获得积分10
25秒前
sxmt123456789发布了新的文献求助30
26秒前
小蘑菇应助七页禾采纳,获得10
27秒前
魔幻若灵给key的求助进行了留言
30秒前
Yucorn完成签到 ,获得积分10
30秒前
笑点低的达完成签到,获得积分10
30秒前
蓝天应助呆萌刚采纳,获得10
32秒前
33秒前
张建发布了新的文献求助10
36秒前
38秒前
39秒前
39秒前
喷泡的兔子完成签到,获得积分0
39秒前
40秒前
40秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Psychology and Work Today 1000
Variants in Economic Theory 1000
Global Ingredients & Formulations Guide 2014, Hardcover 1000
Research for Social Workers 1000
Yangtze Reminiscences. Some Notes And Recollections Of Service With The China Navigation Company Ltd., 1925-1939 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5832083
求助须知:如何正确求助?哪些是违规求助? 6069654
关于积分的说明 15584397
捐赠科研通 4951330
什么是DOI,文献DOI怎么找? 2667973
邀请新用户注册赠送积分活动 1613539
关于科研通互助平台的介绍 1568448