固碳
杉木
环境科学
碳循环
森林经营
初级生产
生态学
生态系统
农林复合经营
生物
二氧化碳
植物
作者
Chen Wang,Shuguang Liu,Yu Zhu,Andrew R. Smith,Ying Ning,Deming Deng
出处
期刊:Forest Ecosystems
[Springer Science+Business Media]
日期:2024-01-01
卷期号:11: 100165-100165
被引量:3
标识
DOI:10.1016/j.fecs.2024.100165
摘要
Understanding the spatial variation, temporal changes, and their underlying driving forces of carbon sequestration in various forests is of great importance for understanding the carbon cycle and carbon management options. How carbon density and sequestration in various Cunninghamia lanceolata forests, extensively cultivated for timber production in subtropical China, vary with biodiversity, forest structure, environment, and cultural factors remain poorly explored, presenting a critical knowledge gap for realizing carbon sequestration supply potential through management.Based on a large-scale database of 449 permanent forest inventory plots, we quantified the spatial-temporal heterogeneity of aboveground carbon densities and carbon accumulation rates in Cunninghamia lanceolate forests in Hunan Province, China, and attributed the contributions of stand structure, environmental, and management factors to the heterogeneity using quantile age-sequence analysis, partial least squares path modeling (PLS-PM), and hot-spot analysis. The results showed low values of carbon density and sequestration on average, in comparison with other forests in the same climate zone (i.e., subtropics), with pronounced spatial and temporal variability. Specifically, quantile regression analysis using carbon accumulation rates along an age sequence showed large differences in carbon sequestration rates among underperformed and outperformed forests (0.50 and 1.80 Mg·ha−1·yr−1). PLS-PM demonstrated that maximum DBH and stand density were the main crucial drivers of aboveground carbon density from young to mature forests. Furthermore, species diversity and geo-topographic factors were the significant factors causing the large discrepancy in aboveground carbon density change between low- and high-carbon-bearing forests. Hotspot analysis revealed the importance of culture attributes in shaping the geospatial patterns of carbon sequestration. Our work highlighted that retaining large-sized DBH trees and increasing shade-tolerant tree species were important to enhance carbon sequestration in C. lanceolate forests.
科研通智能强力驱动
Strongly Powered by AbleSci AI