Forest Height Estimation Using Sentinel-1/2 and ALOS-2

遥感 多光谱图像 合成孔径雷达 计算机科学 代理(统计) 环境科学 激光雷达 均方误差 地理 统计 数学 机器学习
作者
João E. Pereira-Pires,Raffaella Guida,João M. N. Silva,André Mora,José Fonseca
标识
DOI:10.1109/apsar58496.2023.10388740
摘要

Forest monitoring is gaining new importance with the increasing number of events related to climate change (as wildfires). Therefore, mapping the Forest Height (FH) becomes an important activity in the forest management when preparing for the fire seasons and for an improved understanding of climate change. The FH can be used directly, or as a proxy of other variables, as the aboveground biomass. The most accurate way to measure this variable is through field campaigns or airborne laser scanning, however both approaches are expensive and have limitations in terms of spatial and temporal scalability. As an alternative, other Remote Sensing sensors can be used, such as Synthetic Aperture Radar (SAR) or Multispectral scanner. When using SAR data, the commonest approach is to estimate the FH through SAR interferometry, a technique that usually relies in data that is not freely available, making it less suitable for operational scenarios. Also, most of the approaches based on SAR or Multispectral data need large datasets for calibrating the algorithms. In this paper, a Regression Methodology (RM) that resorts to multifrequency SAR, from Sentinel-1 and ALOS-2, and Multispectral data, from Sentinel-2, is proposed for the generation of FH maps of Mediterranean forests. The RM uses a Stacking Regressor, that can generate FH maps, calibrated with data covering only 25% of the study area being mapped. A R2 between 50.79-78.01% and a RMSE between 0.76-3.68m were achieved on a total of 17 study areas across Portugal, Spain, and USA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SciGPT应助EVE采纳,获得10
1秒前
4秒前
NexusExplorer应助热情路人采纳,获得10
8秒前
LuckyR完成签到,获得积分10
9秒前
大马哈鱼发布了新的文献求助10
11秒前
嘻嘻嘻完成签到,获得积分10
11秒前
14秒前
16秒前
在水一方应助wz采纳,获得10
17秒前
嘿嘿应助牛肉mianbo采纳,获得10
17秒前
科研通AI6.2应助xin采纳,获得30
20秒前
xing发布了新的文献求助10
21秒前
21秒前
天天快乐应助Emanon采纳,获得10
22秒前
彭于晏应助无异常采纳,获得10
22秒前
竹音完成签到,获得积分10
27秒前
张mingyu123发布了新的文献求助10
28秒前
30秒前
32秒前
32秒前
顾城浪子完成签到,获得积分10
35秒前
35秒前
鲸落发布了新的文献求助10
37秒前
大个应助ck采纳,获得10
37秒前
萂昕完成签到 ,获得积分10
37秒前
无异常发布了新的文献求助10
39秒前
sciq完成签到,获得积分10
39秒前
圆圆大王发布了新的文献求助30
41秒前
Akim应助111111采纳,获得10
42秒前
wanci应助xing采纳,获得10
42秒前
43秒前
欢喜数据线完成签到,获得积分10
44秒前
44秒前
47秒前
茉莉完成签到,获得积分20
49秒前
zhx发布了新的文献求助10
49秒前
Emanon发布了新的文献求助10
49秒前
爆米花应助xgwkbob采纳,获得30
50秒前
51秒前
52秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Separating Singapore from British India 300
T/SNFSOC 0002—2025 独居石精矿碱法冶炼工艺技术标准 300
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5859306
求助须知:如何正确求助?哪些是违规求助? 6346293
关于积分的说明 15640138
捐赠科研通 4973113
什么是DOI,文献DOI怎么找? 2682617
邀请新用户注册赠送积分活动 1626190
关于科研通互助平台的介绍 1583436