已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

AbDPP: Target‐oriented antibody design with pretraining and prior biological structure knowledge

抗体 抗体库 序列(生物学) 一致性(知识库) 计算生物学 人工智能 计算机科学 机器学习 生物 免疫学 遗传学
作者
Chenglei Yu,Xiangtian Lin,Yuxuan Cheng,Jiahong Xu,Hao Wang,Yuyao Yan,Yanting Huang,Lanxuan Liu,Wei Zhao,Qin Zhao,John Wang,Lei Zhang
出处
期刊:Proteins [Wiley]
卷期号:92 (10): 1147-1160
标识
DOI:10.1002/prot.26676
摘要

Abstract Antibodies represent a crucial class of complex protein therapeutics and are essential in the treatment of a wide range of human diseases. Traditional antibody discovery methods, such as hybridoma and phage display technologies, suffer from limitations including inefficiency and a restricted exploration of the immense space of potential antibodies. To overcome these limitations, we propose a novel method for generating antibody sequences using deep learning algorithms called AbDPP (target‐oriented antibody design with pretraining and prior biological knowledge). AbDPP integrates a pretrained model for antibodies with biological region information, enabling the effective use of vast antibody sequence data and intricate biological system understanding to generate sequences. To target specific antigens, AbDPP incorporates an antibody property evaluation model, which is further optimized based on evaluation results to generate more focused sequences. The efficacy of AbDPP was assessed through multiple experiments, evaluating its ability to generate amino acids, improve neutralization and binding, maintain sequence consistency, and improve sequence diversity. Results demonstrated that AbDPP outperformed other methods in terms of the performance and quality of generated sequences, showcasing its potential to enhance antibody design and screening efficiency. In summary, this study contributes to the field by offering an innovative deep learning‐based method for antibody generation, addressing some limitations of traditional approaches, and underscoring the importance of integrating a specific antibody pretrained model and the biological properties of antibodies in generating novel sequences. The code and documentation underlying this article are freely available at https://github.com/zlfyj/AbDPP .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
默默冬瓜完成签到,获得积分10
1秒前
1秒前
frigidsnap完成签到,获得积分10
1秒前
依托考昔发布了新的文献求助10
2秒前
2秒前
是是是WQ完成签到 ,获得积分0
4秒前
红红火火h完成签到,获得积分10
4秒前
BET发布了新的文献求助10
4秒前
5秒前
qaqzzz发布了新的文献求助50
5秒前
5秒前
123zyuyu发布了新的文献求助10
5秒前
6秒前
6秒前
踏实嚣发布了新的文献求助10
7秒前
mao应助Fan采纳,获得20
7秒前
7秒前
byy完成签到,获得积分10
7秒前
科研助手6应助一路向前采纳,获得10
10秒前
温暖完成签到,获得积分20
10秒前
11秒前
12秒前
cmmmxr发布了新的文献求助10
12秒前
13秒前
温暖发布了新的文献求助10
13秒前
鹿三德完成签到,获得积分10
14秒前
16秒前
dywen完成签到,获得积分10
16秒前
故意的听白完成签到 ,获得积分10
16秒前
17秒前
勤恳凡之发布了新的文献求助10
17秒前
柔弱的问梅完成签到,获得积分10
17秒前
依托考昔完成签到,获得积分10
17秒前
郑思雨完成签到,获得积分20
18秒前
20秒前
dnbe完成签到 ,获得积分10
20秒前
qitu完成签到,获得积分10
21秒前
罗罗完成签到,获得积分10
21秒前
雷家发布了新的文献求助10
22秒前
高分求助中
Worked Bone, Antler, Ivory, and Keratinous Materials 1000
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
建筑材料检测与应用 370
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3830163
求助须知:如何正确求助?哪些是违规求助? 3372674
关于积分的说明 10474177
捐赠科研通 3092303
什么是DOI,文献DOI怎么找? 1702050
邀请新用户注册赠送积分活动 818732
科研通“疑难数据库(出版商)”最低求助积分说明 771047