CF-GCN: Graph Convolutional Network for Change Detection in Remote Sensing Images

计算机科学 遥感 图形 人工智能 地质学 理论计算机科学
作者
Wei Wang,Cong Liu,Guanqun Liu,Xin Wang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-13 被引量:5
标识
DOI:10.1109/tgrs.2024.3357085
摘要

The remote sensing image change detection methods based on deep learning have made great progress.However, many CNN-based methods persistently face challenges in connecting long-range semantic concepts because of their limited receptive fields. Recently, some methods that combine transformers effectively extract global information by modeling the context in the temporal and spatial domains has been proposed to solve the problem, but they still suffer from both the incorrect identification of "non-semantic changes" and the incomplete and irregular boundary extraction due to the deterioration of local feature details. In response to these inquiries, we propose a novel network, CF-GCN, based on graph convolutional structures for change detection. Specifically, in the encoder and decoder of the network, different projection strategies are employed to construct coordinate space graph convolution and feature interaction graph convolution. The Boundary Perception Module extracts spatial boundary features of shallow layers and enhances boundary perception ability during graph-based information propagation, effectively suppressing the tendency of image boundary information to gradually smooth out. At the same time, the knowledge review module is utilized to form knowledge complementarity between key layers of the network, effectively mitigating the propagation of erroneous knowledge in the deep network. On the LEVIR-CD dataset, the IoU score of CF-GCN is 83.41%, which is 0.35% and 0.39% higher than ChangeStar and DMINet, respectively. On the WHU-CD dataset, the F1 and IoU are as high as 91.83% and 84.90%, which are significantly better than other state-of-the-art networks. The experimental results show that, in addition to CNN and Transformer, the graph-convolution structure approach is expected to be another major research direction for performing fully supervised change detection. Our code and pre-trained models will be available at https://github.com/liucongcharles/CF-GCN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Chikit完成签到,获得积分10
2秒前
mmmmmMM完成签到,获得积分10
4秒前
4秒前
hy1234完成签到 ,获得积分10
5秒前
asdfghjkl应助科研通管家采纳,获得10
6秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
共享精神应助科研通管家采纳,获得10
6秒前
Xiaoxiao应助科研通管家采纳,获得10
6秒前
CipherSage应助科研通管家采纳,获得10
6秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
CodeCraft应助科研通管家采纳,获得10
7秒前
桐桐应助科研通管家采纳,获得10
7秒前
FashionBoy应助科研通管家采纳,获得10
7秒前
Lucas应助科研通管家采纳,获得10
7秒前
李爱国应助科研通管家采纳,获得10
7秒前
MchemG应助科研通管家采纳,获得10
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
7秒前
7秒前
moonlimb完成签到 ,获得积分10
8秒前
8秒前
文献狂人发布了新的文献求助10
9秒前
荣浩宇完成签到,获得积分10
10秒前
HH完成签到,获得积分10
11秒前
11秒前
zn315315发布了新的文献求助10
13秒前
miaomiao发布了新的文献求助10
13秒前
小慕斯发布了新的文献求助10
14秒前
英姑应助HH采纳,获得10
14秒前
jiayou完成签到,获得积分10
14秒前
景山槐完成签到,获得积分10
15秒前
Sene完成签到,获得积分10
16秒前
小慕斯完成签到,获得积分10
20秒前
miaomiao完成签到,获得积分10
22秒前
hyy完成签到,获得积分20
22秒前
激昂的秀发完成签到,获得积分10
25秒前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
Political Ideologies Their Origins and Impact 13 edition 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801096
求助须知:如何正确求助?哪些是违规求助? 3346745
关于积分的说明 10330078
捐赠科研通 3063130
什么是DOI,文献DOI怎么找? 1681349
邀请新用户注册赠送积分活动 807509
科研通“疑难数据库(出版商)”最低求助积分说明 763726