CF-GCN: Graph Convolutional Network for Change Detection in Remote Sensing Images

计算机科学 遥感 图形 人工智能 地质学 理论计算机科学
作者
Wei Wang,Cong Liu,Guanqun Liu,Xin Wang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-13 被引量:8
标识
DOI:10.1109/tgrs.2024.3357085
摘要

The remote sensing image change detection methods based on deep learning have made great progress.However, many CNN-based methods persistently face challenges in connecting long-range semantic concepts because of their limited receptive fields. Recently, some methods that combine transformers effectively extract global information by modeling the context in the temporal and spatial domains has been proposed to solve the problem, but they still suffer from both the incorrect identification of "non-semantic changes" and the incomplete and irregular boundary extraction due to the deterioration of local feature details. In response to these inquiries, we propose a novel network, CF-GCN, based on graph convolutional structures for change detection. Specifically, in the encoder and decoder of the network, different projection strategies are employed to construct coordinate space graph convolution and feature interaction graph convolution. The Boundary Perception Module extracts spatial boundary features of shallow layers and enhances boundary perception ability during graph-based information propagation, effectively suppressing the tendency of image boundary information to gradually smooth out. At the same time, the knowledge review module is utilized to form knowledge complementarity between key layers of the network, effectively mitigating the propagation of erroneous knowledge in the deep network. On the LEVIR-CD dataset, the IoU score of CF-GCN is 83.41%, which is 0.35% and 0.39% higher than ChangeStar and DMINet, respectively. On the WHU-CD dataset, the F1 and IoU are as high as 91.83% and 84.90%, which are significantly better than other state-of-the-art networks. The experimental results show that, in addition to CNN and Transformer, the graph-convolution structure approach is expected to be another major research direction for performing fully supervised change detection. Our code and pre-trained models will be available at https://github.com/liucongcharles/CF-GCN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小兰发布了新的文献求助10
刚刚
Cortisol发布了新的文献求助10
刚刚
踏实的谷蕊完成签到,获得积分10
刚刚
Vivid完成签到,获得积分10
1秒前
labulabu发布了新的文献求助10
1秒前
1秒前
1秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
武紊完成签到,获得积分10
2秒前
Ava应助成就井采纳,获得10
3秒前
季生发布了新的文献求助10
3秒前
燕听兰发布了新的文献求助10
4秒前
Zhixia发布了新的文献求助20
4秒前
李健的小迷弟应助yujia采纳,获得10
4秒前
4秒前
martin完成签到,获得积分10
5秒前
6秒前
宋倩发布了新的文献求助10
6秒前
wsg完成签到,获得积分10
6秒前
以太歌声发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
7秒前
cheers完成签到,获得积分10
7秒前
脑洞疼应助chun采纳,获得10
7秒前
乐乐应助威武鸽子采纳,获得10
7秒前
8秒前
8秒前
8秒前
Tan发布了新的文献求助60
8秒前
桐桐应助啾星星采纳,获得10
9秒前
9秒前
zyj完成签到,获得积分10
9秒前
9秒前
10秒前
10秒前
小兰完成签到,获得积分10
10秒前
跳跃曼文发布了新的文献求助10
11秒前
潇洒雁枫完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Nuclear Fuel Behaviour under RIA Conditions 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Optimization and Learning via Stochastic Gradient Search 300
Higher taxa of Basidiomycetes 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4675838
求助须知:如何正确求助?哪些是违规求助? 4053797
关于积分的说明 12535789
捐赠科研通 3747871
什么是DOI,文献DOI怎么找? 2070079
邀请新用户注册赠送积分活动 1099084
科研通“疑难数据库(出版商)”最低求助积分说明 978835