Box2Pseudo: A Semi-Supervised Learning Framework for Pulmonary Nodule Segmentation with Box-Prompt Pseudo Supervision

计算机科学 分割 结核(地质) 人工智能 图像分割 地质学 古生物学
作者
Siqi Zhang,Jingkun Yue,Chengdi Wang,Xiaohong Liu,Guangyu Wang
标识
DOI:10.1109/bibm58861.2023.10385901
摘要

Accurate pulmonary nodule segmentation is critical for early diagnosis of lung cancer. Yet, the high cost and labor-intensive nature of pixel-wise manual annotations remains challenging. In real-world clinical practice, weakly annotated labels like bounding boxes are more affordable and they always coexist with fully pixel-level annotated labels. However, the simultaneous use of fully and weakly annotated data for pulmonary nodule segmentation presents complexities. In this paper, we propose Box2Pseudo, a principled semi-supervised framework for pulmonary segmentation that only uses a small set of fully labeled data (having pixel-level and box labels) and a large set of weakly labeled data (having box labels only). Specifically, our Box2Pseudo consists of three networks, including the box-prompt network (BPN), the pseudo-refine network (PRN) and the main network (MAN). To make full use of localization priors provided by bounding boxes, we propose background-filter layer (BFL), which can be combined with BPN and PRN to generate high-quality pseudo labels. By using the gated feature map generated by BFL, the predicted pseudo labels can enhance the attention of target features within each bounding box. Furthermore, we propose box-prompt pseudo supervision to simultaneously train BPN, PRN and MAN, which enforces the consistency between the prediction of MAN and PRN on the weakly labeled data, thus ensuring the MAN's stable optimization and maximizing the utility of the weak annotations. Comprehensive evaluations on both open-source (LIDC-IDRI) and in-house (HX-NODULE) datasets demonstrate that Box2Pseudo outperforms state-of-the-art methods and achieves comparable performance to fully-supervised approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
马李啸完成签到,获得积分10
1秒前
汉堡包应助可爱的咖啡采纳,获得10
2秒前
Phalloidin完成签到,获得积分10
3秒前
大个应助lvsehx采纳,获得10
4秒前
6秒前
别摆烂了完成签到,获得积分10
7秒前
DE2022完成签到,获得积分10
9秒前
Steven发布了新的文献求助10
9秒前
11秒前
英俊的铭应助XXXX采纳,获得10
11秒前
12秒前
12秒前
之道发布了新的文献求助10
12秒前
土拨鼠完成签到,获得积分20
13秒前
稳重的静丹完成签到,获得积分10
14秒前
16秒前
云泽发布了新的文献求助10
17秒前
小盼虫发布了新的文献求助10
17秒前
18秒前
冷艳的幻桃完成签到,获得积分10
19秒前
爆米花应助学无止境采纳,获得10
21秒前
22秒前
云泽完成签到,获得积分10
23秒前
nnnd77完成签到,获得积分10
24秒前
25秒前
25秒前
赵坤煊完成签到 ,获得积分10
26秒前
27秒前
打打应助羲月采纳,获得10
28秒前
32秒前
火星上亦绿完成签到,获得积分10
33秒前
33秒前
眰恦完成签到 ,获得积分10
33秒前
34秒前
36秒前
psycho发布了新的文献求助10
38秒前
zhouyu完成签到,获得积分10
38秒前
39秒前
41秒前
wanci应助土拨鼠采纳,获得10
42秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778908
求助须知:如何正确求助?哪些是违规求助? 3324476
关于积分的说明 10218591
捐赠科研通 3039495
什么是DOI,文献DOI怎么找? 1668258
邀请新用户注册赠送积分活动 798634
科研通“疑难数据库(出版商)”最低求助积分说明 758440