Enhancing neural encoding models for naturalistic perception with a multi-level integration of deep neural networks and cortical networks

计算机科学 人工神经网络 人工智能 感知 编码(内存) 体素 机器学习 感觉系统 特征(语言学) 杠杆(统计) 计算神经科学 神经科学 心理学 语言学 哲学
作者
Yuanning Li,Huzheng Yang,Shi Gu
出处
期刊:Science Bulletin [Elsevier BV]
卷期号:69 (11): 1738-1747 被引量:3
标识
DOI:10.1016/j.scib.2024.02.035
摘要

Cognitive neuroscience aims to develop computational models that can accurately predict and explain neural responses to sensory inputs in the cortex. Recent studies attempt to leverage the representation power of deep neural networks (DNNs) to predict the brain response and suggest a correspondence between artificial and biological neural networks in their feature representations. However, typical voxel-wise encoding models tend to rely on specific networks designed for computer vision tasks, leading to suboptimal brain-wide correspondence during cognitive tasks. To address this challenge, this work proposes a novel approach that upgrades voxel-wise encoding models through multi-level integration of features from DNNs and information from brain networks. Our approach combines DNN feature-level ensemble learning and brain atlas-level model integration, resulting in significant improvements in predicting whole-brain neural activity during naturalistic video perception. Furthermore, this multi-level integration framework enables a deeper understanding of the brain's neural representation mechanism, accurately predicting the neural response to complex visual concepts. We demonstrate that neural encoding models can be optimized by leveraging a framework that integrates both data-driven approaches and theoretical insights into the functional structure of the cortical networks.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
田様应助柠檬柠檬采纳,获得10
1秒前
WWW发布了新的文献求助100
2秒前
2秒前
lzh353512377发布了新的文献求助10
2秒前
平常玉兰完成签到,获得积分10
2秒前
chloe完成签到,获得积分10
2秒前
zpbb发布了新的文献求助10
2秒前
闲看花季完成签到,获得积分10
3秒前
托塔小姐发布了新的文献求助30
3秒前
饱满冥茗发布了新的文献求助10
3秒前
默默白开水完成签到 ,获得积分10
4秒前
4秒前
4秒前
伊忍姜完成签到,获得积分10
5秒前
6秒前
7秒前
7秒前
柚子蟹完成签到,获得积分10
7秒前
8秒前
lalala发布了新的文献求助10
8秒前
9秒前
娜娜liuna完成签到,获得积分10
9秒前
悟小空完成签到,获得积分10
9秒前
9秒前
赘婿应助小灰灰采纳,获得10
9秒前
个性书翠应助追光采纳,获得10
9秒前
需尽欢发布了新的文献求助10
9秒前
笨笨熊发布了新的文献求助10
10秒前
KKK发布了新的文献求助10
10秒前
10秒前
乐乘发布了新的文献求助10
10秒前
想要赚大钱完成签到,获得积分10
11秒前
点点白帆完成签到,获得积分10
11秒前
田様应助猪猪hero采纳,获得10
11秒前
ZoraZeng发布了新的文献求助20
11秒前
小胖完成签到 ,获得积分10
11秒前
老约翰尼发布了新的文献求助10
12秒前
能干的雨发布了新的文献求助10
12秒前
lucky完成签到,获得积分10
13秒前
13秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Visceral obesity is associated with clinical and inflammatory features of asthma: A prospective cohort study 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3838272
求助须知:如何正确求助?哪些是违规求助? 3380566
关于积分的说明 10514922
捐赠科研通 3100184
什么是DOI,文献DOI怎么找? 1707357
邀请新用户注册赠送积分活动 821678
科研通“疑难数据库(出版商)”最低求助积分说明 772890