Lifestyle and clinical factors as predictive indicators of cardiometabolic multimorbidity in Chinese adults: Baseline findings of the Beijing Health Management Cohort (BHMC) study

医学 血脂异常 列线图 队列 逻辑回归 接收机工作特性 北京 人口 人口学 队列研究 弗雷明翰风险评分 物理疗法 内科学 老年学 疾病 环境卫生 社会学 中国 法学 政治学
作者
Wei Han,Shuo Chen,Linrun Kong,Qiang Li,Jingbo Zhang,Guangliang Shan,Huijing He
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:168: 107792-107792 被引量:4
标识
DOI:10.1016/j.compbiomed.2023.107792
摘要

Cardiometabolic multimorbidity (CMM) is increasing globally as a result of lifestyle changes and the aging population. Even though previous studies have examined risk factors associated with CMM, there is a shortage of prediction models that can accurately identify high-risk individuals for early prevention. In the baseline survey of the Beijing Health Management Cohort, a total of 77,752 adults aged 18 years or older were recruited from 2020 to 2021. Data on lifestyle factors, clinical profiles, and diagnoses of diabetes, coronary heart disease, and stroke were collected. Logistic regression models were used to identify risk factors for CMM. Nomograms were developed to estimate an individual's probability of CMM based on the identified risk factors. The performance of the model was evaluated using the area under the receiver operating characteristic curve (AUC). In men, the top three risk factors for CMM were hypertension (OR: 3.52, 95 % CI: 2.97–4.18), eating very fast (3.43, 2.27–5.16), and dyslipidemia (2.59, 2.20–3.06). In women, hypertension showed the strongest association with CMM (3.62, 2.90–4.52), followed by night sleep duration less than 5 h per day (2.41, 1.67–3.50) and dyslipidemia (1.91, 1.58–2.32). The ORs for holding passive and depressed psychological traits were 1.49 (95%CI: 1.08–2.06) in men and 1.58 (1.03–2.43) in women. Prediction models incorporating these factors demonstrated good discrimination in the test set, with AUC 0.84 (0.83–0.86) for men and 0.90 (0.89–0.91) for women. The sex-specific nomograms were established based on selected predictors. Modifiable lifestyle factors, metabolic health and psychological trait are associated with the risk of CMM. The developed prediction models and nomograms could facilitate early identification of individuals at high-risk of CMM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
企鹅乌云发布了新的文献求助20
刚刚
刚刚
小樊同学发布了新的文献求助10
刚刚
1秒前
wangrblzu应助cxlcxl采纳,获得10
1秒前
共享精神应助thinking采纳,获得10
1秒前
斯文败类应助Threeeeeee采纳,获得10
2秒前
透明木头块儿完成签到,获得积分10
2秒前
2秒前
wizard完成签到,获得积分20
3秒前
bingqian_yao发布了新的文献求助10
3秒前
4秒前
Exk发布了新的文献求助10
4秒前
小刘完成签到,获得积分10
4秒前
4秒前
5秒前
尊敬的芷卉完成签到,获得积分10
5秒前
5秒前
深情安青应助叉叉茶采纳,获得10
6秒前
6秒前
逆天大脚完成签到,获得积分10
7秒前
7秒前
7秒前
慕青应助柯续缘采纳,获得10
8秒前
8秒前
mxy完成签到,获得积分10
9秒前
亭子发布了新的文献求助10
10秒前
10秒前
10秒前
Bailan完成签到,获得积分10
10秒前
小刘发布了新的文献求助10
11秒前
11秒前
蝃蝀完成签到,获得积分10
11秒前
lily发布了新的文献求助10
12秒前
2336783477发布了新的文献求助10
12秒前
13秒前
兰彻发布了新的文献求助10
13秒前
Avisit完成签到,获得积分10
13秒前
nemo发布了新的文献求助10
14秒前
14秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Experimental Design for the Life Sciences 200
Semiconductor Wafer Bonding: Science Technology, and Applications VI 200
Parallel Optimization 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3835852
求助须知:如何正确求助?哪些是违规求助? 3378260
关于积分的说明 10503027
捐赠科研通 3097775
什么是DOI,文献DOI怎么找? 1706063
邀请新用户注册赠送积分活动 820776
科研通“疑难数据库(出版商)”最低求助积分说明 772292