DeepInterAware: Deep Interaction Interface‐Aware Network for Improving Antigen‐Antibody Interaction Prediction from Sequence Data

计算机科学 抗原 接口(物质) 抗体 计算生物学 蛋白质-蛋白质相互作用 序列(生物学) 交互网络 生物 免疫学 遗传学 基因 最大气泡压力法 气泡 并行计算
作者
Yiben Xia,Zhiwei Wang,Feng Huang,Zhankun Xiong,Yongkang Wang,Minyao Qiu,Wen Zhang
出处
期刊:Advanced Science [Wiley]
被引量:2
标识
DOI:10.1002/advs.202412533
摘要

Abstract Identifying interactions between candidate antibodies and target antigens is a key step in developing effective human therapeutics. The antigen–antibody interaction (AAI) occurs at the structural level, but the limited structure data poses a significant challenge. However, recent studies revealed that structural information can be learned from the vast amount of sequence data, indicating that the interaction prediction can benefit from the abundance of antigen and antibody sequences. In this study, DeepInterAware (deep interaction interface‐aware network) is proposed, a framework dynamically incorporating interaction interface information directly learned from sequence data, along with the inherent specificity information of the sequences. Experimental results in interaction prediction demonstrate that DeepInterAware outperforms existing methods and exhibits promising inductive capabilities for predicting interactions involving unseen antigens or antibodies, and transfer capabilities for similar tasks. More notably, DeepInterAware has unique advantages that existing methods lack. First, DeepInterAware can dive into the underlying mechanisms of AAIs, offering the ability to identify potential binding sites. Second, it is proficient in detecting mutations within antigens or antibodies, and can be extended for precise predictions of the binding free energy changes upon mutations. The HER2‐targeting antibody screening experiment further underscores DeepInterAware's exceptional capability in identifying binding antibodies for target antigens, establishing it as an important tool for antibody screening.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kiki完成签到 ,获得积分10
2秒前
marc107发布了新的文献求助10
3秒前
无敌猫饭完成签到 ,获得积分10
4秒前
victor完成签到,获得积分10
5秒前
yushun2完成签到,获得积分10
6秒前
7秒前
胖虎完成签到 ,获得积分10
10秒前
11秒前
11秒前
11秒前
11秒前
11秒前
11秒前
Ava应助科研通管家采纳,获得10
11秒前
斯文败类应助科研通管家采纳,获得10
11秒前
彭于晏应助科研通管家采纳,获得10
11秒前
星辰大海应助科研通管家采纳,获得10
12秒前
12秒前
朴素梦蕊完成签到 ,获得积分10
13秒前
Oscillator发布了新的文献求助10
13秒前
beizi完成签到 ,获得积分10
16秒前
David完成签到 ,获得积分10
19秒前
20秒前
YSY完成签到,获得积分10
21秒前
Jasper应助舒适的采波采纳,获得10
24秒前
李健应助Jacquielin采纳,获得10
27秒前
狗尾巴草完成签到 ,获得积分10
27秒前
李健应助Oscillator采纳,获得10
29秒前
29秒前
迪迦奥特曼完成签到,获得积分10
29秒前
阿佳great发布了新的文献求助10
33秒前
37秒前
从容谷菱完成签到 ,获得积分10
38秒前
小丸子完成签到 ,获得积分0
40秒前
42秒前
67号完成签到 ,获得积分10
43秒前
宣宣完成签到 ,获得积分10
44秒前
左传琦完成签到 ,获得积分10
44秒前
pbuu完成签到,获得积分10
48秒前
Le完成签到,获得积分10
50秒前
高分求助中
Yangtze Reminiscences. Some Notes And Recollections Of Service With The China Navigation Company Ltd., 1925-1939 800
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
T/SNFSOC 0002—2025 独居石精矿碱法冶炼工艺技术标准 300
The Impact of Lease Accounting Standards on Lending and Investment Decisions 250
The Linearization Handbook for MILP Optimization: Modeling Tricks and Patterns for Practitioners (MILP Optimization Handbooks) 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5851497
求助须知:如何正确求助?哪些是违规求助? 6270487
关于积分的说明 15626662
捐赠科研通 4967463
什么是DOI,文献DOI怎么找? 2678570
邀请新用户注册赠送积分活动 1622851
关于科研通互助平台的介绍 1579246