Optimization of breeding program design through stochastic simulation with evolutionary algorithms

计算机科学 数学优化 近亲繁殖 进化算法 遗传算法 核(代数) 机器学习 数学 人口 人口学 组合数学 社会学
作者
Azadeh Hassanpour,Johannes Geibel,Henner Simianer,Antje Rohde,Torsten Pook
出处
期刊:G3: Genes, Genomes, Genetics [Oxford University Press]
被引量:1
标识
DOI:10.1093/g3journal/jkae248
摘要

The effective planning and allocation of resources in modern breeding programs is a complex task. Breeding program design and operational management have a major impact on the success of a breeding program and changing parameters such as the number of selected/phenotyped/genotyped individuals in the breeding program will impact genetic gain, genetic diversity, and costs. As a result, careful assessment and balancing of design parameters is crucial, taking into account the trade-offs between different breeding goals and associated costs. In a previous study, we optimized the resource allocation strategy in a dairy cattle breeding scheme via the combination of stochastic simulations and kernel regression, aiming to maximize a target function containing genetic gain and the inbreeding rate under a given budget. However, the high number of simulations required when using the proposed kernel regression method to optimize a breeding program with many parameters weakens the effectiveness of such a method. In this work, we are proposing an optimization framework that builds on the concepts of kernel regression but additionally makes use of an evolutionary algorithm to allow for a more effective and general optimization. The key idea is to consider a set of potential parameter settings of the breeding program, evaluate their performance based on stochastic simulations, and use these outputs to derive new parameter settings to test in an iterative procedure. The evolutionary algorithm was implemented in a Snakemake workflow management system to allow for efficient scaling on large distributed computing platforms. The algorithm achieved stabilization around the same optimum with a massively reduced number of simulations. Thereby, the incorporation of class variables and accounting for a higher number of parameters in the optimization framework leads to substantially reduced computing time and better scaling for the desired optimization of a breeding program.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
明亮冰枫给赵浩楠的求助进行了留言
2秒前
123完成签到,获得积分10
3秒前
a0104104完成签到,获得积分10
3秒前
3秒前
3秒前
4秒前
11111555发布了新的文献求助30
6秒前
7秒前
李卓佳发布了新的文献求助10
8秒前
落寞代亦发布了新的文献求助10
8秒前
wang应助S1mple采纳,获得10
11秒前
量子星尘发布了新的文献求助10
11秒前
12秒前
14秒前
白英完成签到,获得积分10
16秒前
16秒前
17秒前
ygh完成签到,获得积分10
19秒前
传统的孤丝完成签到 ,获得积分10
20秒前
依依发布了新的文献求助10
20秒前
connie完成签到,获得积分20
20秒前
洪伟发布了新的文献求助30
20秒前
清脆的问凝完成签到 ,获得积分10
20秒前
JamesPei应助羞涩的寒松采纳,获得10
20秒前
21秒前
21秒前
柚子发布了新的文献求助10
22秒前
量子星尘发布了新的文献求助10
22秒前
沉柒完成签到,获得积分10
23秒前
量子星尘发布了新的文献求助10
23秒前
S1mple完成签到,获得积分10
24秒前
Ava应助羞涩的寒松采纳,获得10
26秒前
无辜的青柏完成签到,获得积分10
28秒前
蒲公英发布了新的文献求助10
28秒前
大个应助SXW采纳,获得10
28秒前
uu完成签到,获得积分20
30秒前
复杂的兔子完成签到,获得积分10
30秒前
桃花扇完成签到,获得积分10
32秒前
明理平文完成签到 ,获得积分10
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Agyptische Geschichte der 21.30. Dynastie 2000
Variants in Economic Theory 1000
Global Ingredients & Formulations Guide 2014, Hardcover 1000
Research for Social Workers 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5817967
求助须知:如何正确求助?哪些是违规求助? 5951973
关于积分的说明 15549215
捐赠科研通 4940272
什么是DOI,文献DOI怎么找? 2660871
邀请新用户注册赠送积分活动 1607099
关于科研通互助平台的介绍 1562099