Automatic Segmentation of Bone Graft in Maxillary Sinus Via Distance Constrained Network Guided by Prior Anatomical Knowledge

计算机科学 上颌窦 分割 人工智能 计算机视觉 图像分割 放射科 医学 牙科
作者
Jiangchang Xu,Jie Gao,Shuanglin Jiang,Chunliang Wang,Örjan Smedby,Yiqun Wu,Xiaoyi Jiang,Xiaojun Chen
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:29 (3): 1995-2005
标识
DOI:10.1109/jbhi.2024.3505262
摘要

Maxillary Sinus Lifting is a crucial surgical procedure for addressing insufficient alveolar bone mass andsevere resorption in dental implant therapy. To accurately analyze the geometry changesof the bone graft (BG) in the maxillary sinus (MS), it is essential to perform quantitative analysis. However, automated BG segmentation remains a major challenge due to the complex local appearance, including blurred boundaries, lesion interference, implant and artifact interference, and BG exceeding the MS. Currently, there are few tools available that can efficiently and accurately segment BG from cone beam computed tomography (CBCT) image. In this paper, we propose a distance-constrained attention network guided by prior anatomical knowledge for the automatic segmentation of BG. First, a guidance strategy of preoperative prior anatomical knowledge is added to a deep neural network (DNN), which improves its ability to identify the dividing line between the MS and BG. Next, a coordinate attention gate is proposed, which utilizes the synergy of channel and position attention to highlight salient features from the skip connections. Additionally, the geodesic distance constraint is introduced into the DNN to form multi-task predictions, which reduces the deviation of the segmentation result. In the test experiment, the proposed DNN achieved a Dice similarity coefficient of 85.48 6.38%, an average surface distance error is 0.57 0.34mm, and a 95% Hausdorff distance of 2.64 2.09mm, which is superior to the comparison networks. It markedly improves the segmentation accuracy and efficiency of BG and has potential applications in analyzing its volume change and absorption rate in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
危机的外套完成签到 ,获得积分10
1秒前
1秒前
3秒前
5秒前
5秒前
7秒前
华仔应助娜尼啊采纳,获得10
7秒前
9秒前
乐乐应助伍佰采纳,获得10
9秒前
LLL完成签到 ,获得积分10
10秒前
sillyboy完成签到,获得积分10
10秒前
镓氧锌钇铀应助kkkkpoa采纳,获得10
10秒前
zhunyun发布了新的文献求助10
11秒前
11秒前
问雁发布了新的文献求助10
12秒前
12秒前
dara发布了新的文献求助10
12秒前
柚子应助jason70采纳,获得10
12秒前
lisa完成签到,获得积分10
13秒前
Jasper应助怡然的代玉采纳,获得10
13秒前
cadet发布了新的文献求助10
15秒前
15秒前
gqy发布了新的文献求助10
16秒前
个性的磬应助微笑的烨霖采纳,获得10
16秒前
16秒前
ZZQ完成签到 ,获得积分10
17秒前
天天快乐应助biubiu采纳,获得10
17秒前
18秒前
yanzhonghui发布了新的文献求助10
18秒前
18秒前
heisa完成签到,获得积分10
18秒前
swg发布了新的文献求助10
21秒前
21秒前
在水一方应助ziyue采纳,获得10
21秒前
鲤鱼晓灵发布了新的文献求助10
22秒前
量子星尘发布了新的文献求助10
23秒前
KerwinLLL发布了新的文献求助10
23秒前
23秒前
23秒前
24秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Plutonium Handbook 4000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Functional High Entropy Alloys and Compounds 1000
Building Quantum Computers 1000
Molecular Cloning: A Laboratory Manual (Fourth Edition) 500
Social Epistemology: The Niches for Knowledge and Ignorance 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4231757
求助须知:如何正确求助?哪些是违规求助? 3765050
关于积分的说明 11830542
捐赠科研通 3424028
什么是DOI,文献DOI怎么找? 1879039
邀请新用户注册赠送积分活动 931933
科研通“疑难数据库(出版商)”最低求助积分说明 839431