Potential role of formononetin as a novel natural agent in Alzheimer's disease and osteoporosis comorbidity

芒柄花素 疾病 计算生物学 生物信息学 基因 人口 候选基因 生物 医学 遗传学 内科学 环境卫生 染料木素 大豆黄酮
作者
Zhigang Wang,Qiaoyi Liang,Zhaoqiu Lin,Hongyang Li,Xin Chen,Zhenyou Zou,Jingxin Mo
出处
期刊:Journal of Alzheimer's Disease [IOS Press]
卷期号:103 (2): 361-371
标识
DOI:10.1177/13872877241299104
摘要

Background The growing aging population has led to an increase in the prevalence of Alzheimer's disease (AD) and osteoporosis (OP), both of which significantly impair quality of life. The comorbid nature of these conditions suggests a shared genetic etiology, the understanding of which is crucial for developing targeted therapies. Objective This study aims to explore the shared genetic etiology underlying AD and OP, using a system biology approach to identify potential therapeutic targets and natural compounds for treatment. Methods We employed Weighted Gene Co-Expression Network Analysis (WGCNA) with molecular docking strategies to uncover the genetic links between AD and OP. MT2A and CACNA1C were identified as key pleiotropic hub genes potentially linking AD and OP. Molecular docking was utilized to screen for compounds with therapeutic potential, leading to the identification of formononetin as a compound with significant binding affinity to these hub genes. Quantitative real-time PCR (qRT-PCR) validation was conducted to confirm the gene expression changes in disease models. Results Our study indicate that formononetin exhibits strong binding affinity to the identified hub genes, MT2A and CACNA1C. qRT-PCR validation confirmed the upregulation of these genes in disease models, which was mitigated upon treatment with formononetin, suggesting a reversal of disease markers. Conclusions This study advances our understanding of the genetic intersections between AD and OP and positions formononetin as a promising natural agent for further translational research. Formononetin's multi-target potential makes it a valuable candidate for managing these comorbid conditions, meriting further investigation and development as a therapeutic strategy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
袁国庆完成签到 ,获得积分10
2秒前
鱿鱼炒黄瓜完成签到 ,获得积分10
4秒前
5秒前
5秒前
体贴雨真应助YAN采纳,获得10
7秒前
LvCR完成签到 ,获得积分10
7秒前
9秒前
9秒前
9秒前
小白发布了新的文献求助10
10秒前
11秒前
晶晶发布了新的文献求助10
13秒前
热心的豌豆完成签到 ,获得积分10
13秒前
自由马儿发布了新的文献求助10
14秒前
杨华启应助吱吱的孜孜采纳,获得80
15秒前
后陡门小学生完成签到 ,获得积分10
15秒前
15秒前
YAN完成签到,获得积分10
16秒前
19秒前
聪慧的安蕾完成签到 ,获得积分10
20秒前
20秒前
sylinmm完成签到,获得积分10
22秒前
科研通AI6.2应助自由马儿采纳,获得10
24秒前
25秒前
27秒前
Fred发布了新的文献求助10
27秒前
28秒前
搜集达人应助科研通管家采纳,获得10
29秒前
李爱国应助科研通管家采纳,获得10
29秒前
29秒前
慕青应助科研通管家采纳,获得10
29秒前
Deadman完成签到,获得积分10
30秒前
维恰完成签到 ,获得积分10
33秒前
34秒前
Herry-Jeremy发布了新的文献求助10
36秒前
36秒前
进击的黄金小涵完成签到,获得积分20
37秒前
小二郎应助帅气的向珊采纳,获得10
37秒前
结实抽屉发布了新的文献求助10
38秒前
科研狗应助mark2021采纳,获得30
38秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Elastography for characterization of focal liver lesions: current evidence and future perspectives 200
Mastering Prompt Engineering: A Complete Guide 200
Elastography for characterization of focal liver lesions: current evidence and future perspectives 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5870051
求助须知:如何正确求助?哪些是违规求助? 6457786
关于积分的说明 15662561
捐赠科研通 4986068
什么是DOI,文献DOI怎么找? 2688646
邀请新用户注册赠送积分活动 1630981
关于科研通互助平台的介绍 1589097