Precise Synthesis of 4.75 V-Tolerant LiCoO2 with Homogeneous Delithiation and Reduced Internal Strain

化学 同种类的 拉伤 化学工程 热力学 矿物学 医学 物理 内科学 工程类
作者
Min Zhang,Weiyuan Huang,Jiayi Tang,Zhaoguo Liu,Chuanchao Sheng,Xinyi Sun,Hanyun Zhong,Sheng Xu,Wenjie Ning,Xianghui Xiao,Tongchao Liu,Shaohua Guo,Haoshen Zhou
出处
期刊:Journal of the American Chemical Society [American Chemical Society]
卷期号:147 (2): 1563-1573 被引量:30
标识
DOI:10.1021/jacs.4c10976
摘要

The rapid advancements in 3C electronic devices necessitate an increase in the charge cutoff voltage of LiCoO2 to unlock a higher energy density that surpasses the currently available levels. However, the structural devastation and electrochemical decay of LiCoO2 are significantly exacerbated, particularly at ≥4.5 V, due to the stress concentration caused by more severe lattice expansion and shrinkage, coupled with heterogeneous Li+ intercalation/deintercalation reactions. Herein, employing the molten-salt synthesis technique, we propose a universal morphology-shaping strategy to attain bulk reaction homogeneity and reduce internal strains, even at extremely high charge voltages. The newly designed flattened polygon prismlike LiCoO2 (P-LCO) particle, featuring a regular symmetrical arrangement along the c-axis, demonstrates a more homogeneous Li+ extraction/insertion reaction, which results in a restrained transformation to detrimental O1 phase and reduced variation in lattice volume throughout the (de)lithiation processes. This benefits the mitigation of the local stress accumulation misfit dislocations and particle cracking, ultimately maintaining the mechanical stability of the cathode. Consequently, P-LCO is capable of breaking the voltage ceiling and exhibits exceptional long-term cycling capability at an ultrahigh voltage of 4.75 V. This work offers a brand-new perspective for the rational design of cathode morphology to address capacity deterioration caused by inhomogeneous delithiation and internal strain, thus inspiring the development of high-energy-density cathodes with improved durability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
文献自由发布了新的文献求助10
刚刚
1秒前
zy完成签到,获得积分10
2秒前
我是老大应助汝桢采纳,获得10
3秒前
NiLou完成签到,获得积分20
4秒前
Orange应助张佳宁采纳,获得10
4秒前
科研通AI2S应助hhhhh采纳,获得10
5秒前
6秒前
6秒前
HJJHJH发布了新的文献求助30
6秒前
6秒前
10秒前
李子发布了新的文献求助10
10秒前
10秒前
徐磊完成签到,获得积分10
11秒前
12秒前
12秒前
自信的如之完成签到,获得积分20
12秒前
光年完成签到 ,获得积分10
12秒前
sapphire发布了新的文献求助10
14秒前
15秒前
sun完成签到 ,获得积分10
15秒前
木易发布了新的文献求助10
15秒前
hhhhh发布了新的文献求助10
16秒前
欢喜数据线给欢喜数据线的求助进行了留言
17秒前
18秒前
加菲丰丰发布了新的文献求助10
20秒前
调皮醉波完成签到 ,获得积分10
20秒前
21秒前
21秒前
21秒前
22秒前
23秒前
tracy发布了新的文献求助10
27秒前
张佳宁发布了新的文献求助10
28秒前
30秒前
31秒前
sapphire完成签到,获得积分10
33秒前
35秒前
35秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Separating Singapore from British India 300
T/SNFSOC 0002—2025 独居石精矿碱法冶炼工艺技术标准 300
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5859389
求助须知:如何正确求助?哪些是违规求助? 6347072
关于积分的说明 15640235
捐赠科研通 4973150
什么是DOI,文献DOI怎么找? 2682640
邀请新用户注册赠送积分活动 1626238
关于科研通互助平台的介绍 1583474