材料科学
枝晶(数学)
阳极
沉积(地质)
锌
金属
激光器
冶金
纳米技术
光电子学
电极
光学
化学
古生物学
几何学
数学
物理
物理化学
沉积物
生物
作者
Peng Kang,Yi Yuan,Funian Mo,Haibo Hu
出处
期刊:ACS Nano
[American Chemical Society]
日期:2025-04-17
标识
DOI:10.1021/acsnano.5c02450
摘要
A critical barrier to commercializing aqueous Zn-metal batteries lies in the dual challenges of dendritic Zn growth and parasitic side reactions at the anode/electrolyte interface. Here, this study presents a front-end design optimization strategy for Zn metal anodes (ZMAs), combining surface laser texturing with alloying treatment to stabilize the interfacial chemistry. Specifically, laser texturing creates a geometrically ordered microstructure on the Zn surface, while subsequent chemical permeation induces the in situ transformation of this microstructured layer into a CuZn5 alloy, forming the LT-Zn@CuZn5 anode. The geometrically ordered alloy coating homogenizes the electronic filed distribution across the zinc surface and enhances corrosion resistance. Thereby, the LT-Zn@CuZn5 anode demonstrated optimized electrochemical reversibility, sustaining over 3000 cycles at 3 mA cm-2/1 mAh cm-2. This performance translates into a high improvement in the cycling behavior of the assembled Zn||I2 soft pack battery, which acquired an initial capacity of 225.8 mAh g-1 and retained 79.1% after 4000 cycles. In contrast, the counterpart employing untreated Zn foil started with a lower initial capacity of 180.7 mAh g-1 and failed after less than 478 cycles. The demonstrated effective approach improves the front-end design strategy of ZMAs and contributes to the development of dendrite-free ZMAs.
科研通智能强力驱动
Strongly Powered by AbleSci AI