An integration of ensemble deep learning with hybrid optimization approaches for effective underwater object detection and classification model

计算机科学 水下 人工智能 集成学习 机器学习 对象(语法) 目标检测 深度学习 模式识别(心理学) 地质学 海洋学
作者
G. Abirami,S. Nagadevi,J. D. Dorathi Jayaseeli,T. Prabhakara Rao,R. S. M. Lakshmi Patibandla,Rajanikanth Aluvalu,K. Srihari
出处
期刊:Scientific Reports [Nature Portfolio]
卷期号:15 (1) 被引量:2
标识
DOI:10.1038/s41598-025-95596-5
摘要

Underwater object detection (UOD) is essential in maritime environmental study and underwater species protection. The development of associated technology holds real-world importance. While current object recognition methods have attained an outstanding performance on terrestrial, they are less suitable in underwater conditions because of dual restrictions: the underwater objects are generally smaller, closely spread, and disposed to obstruction features, and underwater embedding tools have temporary storing and computation abilities. Image-based UOD has progressed fast recently, in addition to deep learning (DL) applications and development in computer vision (CV). Investigators utilize DL models to identify possible objects inside an image. Convolutional neural network (CNN) is the major technique of DL, which enhances the learning qualities. In this manuscript, an Underwater Object Detection and Classification Utilizing the Ensemble Deep Learning Approach and Hybrid Optimization Algorithms (UODC-EDLHOA) technique is developed. The UODC-EDLHOA technique mainly detects and classifies underwater objects using advanced DL and hyperparameter models. Initially, the UODC-EDLHOA model involved several levels of pre-processing and noise removal to improve the clearness of the underwater images. The backbone of EfficientNetB7, which has an attention mechanism, is employed for feature extraction. Furthermore, the YOLOv9-based object detection is utilized. For underwater object detection, an ensemble of three techniques, namely deep neural network (DNN), deep belief network (DBN), and long short-term memory (LSTM), is implemented. Finally, the hyperparameter selection uses the hybrid Siberian tiger and sand cat swarm optimization (STSC) methods. Extensive experimentation is conducted on the UOD dataset to illustrate the robust classification performance of the UODC-EDLHOA model. The performance validation of the UODC-EDLHOA model portrayed a superior accuracy value of 92.78% over existing techniques.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李宁定完成签到,获得积分10
刚刚
三木发布了新的文献求助10
刚刚
1秒前
Zjn-完成签到,获得积分10
1秒前
wbshore完成签到,获得积分10
2秒前
2秒前
帅气太英完成签到,获得积分10
2秒前
stt完成签到,获得积分20
2秒前
bkagyin应助xl采纳,获得10
2秒前
3秒前
吴佳宝完成签到,获得积分10
3秒前
Aeon发布了新的文献求助30
3秒前
王菲发布了新的文献求助10
3秒前
开心果大王完成签到,获得积分10
4秒前
泥昵哒耶完成签到 ,获得积分10
4秒前
XSY发布了新的文献求助10
4秒前
小方发布了新的文献求助10
4秒前
5秒前
5秒前
蛋堡发布了新的文献求助10
5秒前
weanqin发布了新的文献求助10
6秒前
打打应助gentille采纳,获得10
6秒前
PPP完成签到,获得积分10
7秒前
7秒前
7秒前
Lizzy完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助50
7秒前
Panchael完成签到,获得积分10
8秒前
李爱国应助KKKK采纳,获得10
8秒前
8秒前
长村完成签到,获得积分10
9秒前
114514发布了新的文献求助10
9秒前
罂粟完成签到,获得积分10
9秒前
9秒前
HHHHH发布了新的文献求助10
10秒前
KristenStewart完成签到,获得积分10
10秒前
10秒前
完美世界应助蛋堡采纳,获得10
10秒前
zhangpeipei完成签到,获得积分10
11秒前
超级mxl完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5095779
求助须知:如何正确求助?哪些是违规求助? 4308719
关于积分的说明 13425216
捐赠科研通 4135630
什么是DOI,文献DOI怎么找? 2265681
邀请新用户注册赠送积分活动 1268964
关于科研通互助平台的介绍 1205022