Advanced Prediction of Heart Failure Risk in Elderly Diabetic and Hypertensive Patients Using Nine Machine Learning Models and Novel Composite Indices: Insights from NHANES 2003-2016

医学 心力衰竭 内科学 心脏病学
作者
Qiyuan Bai,Xuejiao Chen,Zhen Gao,Bing Li,Shidong Liu,Wentao Dong,Xuhua Li,Bing Song,Cuntao Yu
出处
期刊:European Journal of Preventive Cardiology [Oxford University Press]
被引量:4
标识
DOI:10.1093/eurjpc/zwaf081
摘要

As the global population ages, cardiovascular diseases, particularly heart failure (HF), have become leading causes of mortality and disability among elderly patients. Diabetes and hypertension are major risk factors for cardiovascular diseases, making this group especially vulnerable to heart failure. Current clinical tools for predicting HF risk are often complex, requiring extensive clinical parameters and laboratory tests, which limit their practical application. Therefore, a need exists for a predictive model that is both simple and effective in assessing heart failure risk in elderly patients with diabetes and hypertension. This study utilized data from the National Health and Nutrition Examination Survey (NHANES), spanning seven cycles from 2003 to 2016, including 71,058 subjects. The study focused on elderly patients (aged 65 and above) diagnosed with both diabetes and hypertension, ultimately including 1,445 participants. We examined seven novel composite indices: A Body Shape Index (ABSI), Atherogenic Index of Plasma (AIP), BARD score, Body Fat Percentage (BFP), Body Roundness Index (BRI), Fatty Liver Index (FLI), and Prognostic Nutritional Index (PNI). These indices were selected for their simplicity and ease of calculation from routine clinical assessments. The primary outcome was heart failure status, and data preprocessing included imputation for missing values using random forest algorithms. Various machine learning models were applied, including Random Forest, Logistic Regression, XGBoost, and others, with model performance assessed through metrics like accuracy, precision, recall, F1 score, and ROC AUC. The best-performing model was further analyzed using SHAP (SHapley Additive exPlanations) values to determine feature importance. The study found that the XGBoost model demonstrated superior performance across all evaluation metrics, with an AUC value of 0.96. Significant predictors of heart failure included BRI and PNI, which had the highest SHAP values, indicating their substantial influence on model predictions. The study also highlighted the robust predictive capabilities of AIP, particularly in assessing cardiovascular events in elderly patients. The study demonstrates that novel composite indices like ABSI, AIP, BARD score, Body Fat Percentage, BRI, FLI, and PNI have significant potential in predicting heart failure risk among elderly diabetic and hypertensive patients. These indices offer clinicians new tools for cardiovascular risk assessment that are simpler and potentially more effective in clinical practice. Future research should focus on validating these findings in different populations and exploring their longitudinal predictive power.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丝丢皮得完成签到 ,获得积分10
5秒前
11秒前
Tosced完成签到,获得积分20
15秒前
李新颖完成签到 ,获得积分10
17秒前
刺猬完成签到,获得积分10
17秒前
mengmenglv完成签到 ,获得积分0
19秒前
娟娟完成签到 ,获得积分10
20秒前
科研通AI5应助科研通管家采纳,获得10
21秒前
Tosced发布了新的文献求助30
21秒前
sillyboy应助科研通管家采纳,获得10
21秒前
科研通AI2S应助科研通管家采纳,获得10
21秒前
sillyboy应助科研通管家采纳,获得10
21秒前
曹乌完成签到 ,获得积分10
22秒前
28秒前
科研通AI2S应助jzm采纳,获得30
28秒前
三石完成签到 ,获得积分10
30秒前
32秒前
TGU的小马同学完成签到 ,获得积分10
35秒前
ssassassassa完成签到 ,获得积分10
39秒前
43秒前
xmhxpz完成签到,获得积分10
45秒前
Dawnnn完成签到 ,获得积分10
48秒前
酷酷涫完成签到 ,获得积分0
52秒前
Xenia完成签到 ,获得积分10
55秒前
57秒前
细心青雪完成签到 ,获得积分10
57秒前
Owen应助sun采纳,获得10
59秒前
朴素的紫安完成签到 ,获得积分10
1分钟前
1分钟前
vvvv发布了新的文献求助10
1分钟前
1分钟前
shanshan发布了新的文献求助10
1分钟前
1分钟前
现实的曼安完成签到 ,获得积分10
1分钟前
内向的火车完成签到 ,获得积分10
1分钟前
合适靖儿完成签到 ,获得积分10
1分钟前
1分钟前
shanshan完成签到,获得积分20
1分钟前
爆米花应助shanshan采纳,获得10
1分钟前
1分钟前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Robot-supported joining of reinforcement textiles with one-sided sewing heads 780
A Student's Guide to Developmental Psychology 600
水稻光合CO2浓缩机制的创建及其作用研究 500
Logical form: From GB to Minimalism 500
2025-2030年中国消毒剂行业市场分析及发展前景预测报告 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4156299
求助须知:如何正确求助?哪些是违规求助? 3692137
关于积分的说明 11659020
捐赠科研通 3383242
什么是DOI,文献DOI怎么找? 1856340
邀请新用户注册赠送积分活动 917831
科研通“疑难数据库(出版商)”最低求助积分说明 831175