Advanced Prediction of Heart Failure Risk in Elderly Diabetic and Hypertensive Patients Using Nine Machine Learning Models and Novel Composite Indices: Insights from NHANES 2003-2016

医学 心力衰竭 内科学 心脏病学
作者
Qiyuan Bai,Xuejiao Chen,Zhen Gao,Bing Li,Shidong Liu,Wentao Dong,Xuhua Li,Bing Song,Cuntao Yu
出处
期刊:European Journal of Preventive Cardiology [Oxford University Press]
被引量:7
标识
DOI:10.1093/eurjpc/zwaf081
摘要

As the global population ages, cardiovascular diseases, particularly heart failure (HF), have become leading causes of mortality and disability among elderly patients. Diabetes and hypertension are major risk factors for cardiovascular diseases, making this group especially vulnerable to heart failure. Current clinical tools for predicting HF risk are often complex, requiring extensive clinical parameters and laboratory tests, which limit their practical application. Therefore, a need exists for a predictive model that is both simple and effective in assessing heart failure risk in elderly patients with diabetes and hypertension. This study utilized data from the National Health and Nutrition Examination Survey (NHANES), spanning seven cycles from 2003 to 2016, including 71,058 subjects. The study focused on elderly patients (aged 65 and above) diagnosed with both diabetes and hypertension, ultimately including 1,445 participants. We examined seven novel composite indices: A Body Shape Index (ABSI), Atherogenic Index of Plasma (AIP), BARD score, Body Fat Percentage (BFP), Body Roundness Index (BRI), Fatty Liver Index (FLI), and Prognostic Nutritional Index (PNI). These indices were selected for their simplicity and ease of calculation from routine clinical assessments. The primary outcome was heart failure status, and data preprocessing included imputation for missing values using random forest algorithms. Various machine learning models were applied, including Random Forest, Logistic Regression, XGBoost, and others, with model performance assessed through metrics like accuracy, precision, recall, F1 score, and ROC AUC. The best-performing model was further analyzed using SHAP (SHapley Additive exPlanations) values to determine feature importance. The study found that the XGBoost model demonstrated superior performance across all evaluation metrics, with an AUC value of 0.96. Significant predictors of heart failure included BRI and PNI, which had the highest SHAP values, indicating their substantial influence on model predictions. The study also highlighted the robust predictive capabilities of AIP, particularly in assessing cardiovascular events in elderly patients. The study demonstrates that novel composite indices like ABSI, AIP, BARD score, Body Fat Percentage, BRI, FLI, and PNI have significant potential in predicting heart failure risk among elderly diabetic and hypertensive patients. These indices offer clinicians new tools for cardiovascular risk assessment that are simpler and potentially more effective in clinical practice. Future research should focus on validating these findings in different populations and exploring their longitudinal predictive power.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王秋婷发布了新的文献求助10
刚刚
阿航完成签到,获得积分10
2秒前
领导范儿应助樊珩采纳,获得10
3秒前
Assassion完成签到 ,获得积分10
3秒前
简单面包完成签到,获得积分10
4秒前
4秒前
4秒前
今后应助刘梓采纳,获得10
5秒前
nini完成签到,获得积分10
5秒前
明研完成签到,获得积分10
5秒前
6秒前
Jasper应助全佳伟采纳,获得10
6秒前
量子星尘发布了新的文献求助10
8秒前
OmmeHabiba完成签到,获得积分10
9秒前
hymmloveGD发布了新的文献求助10
9秒前
9秒前
zkylh应助明明就采纳,获得10
9秒前
科研通AI6应助mokano采纳,获得10
10秒前
júpiter发布了新的文献求助20
10秒前
Pooh完成签到 ,获得积分10
10秒前
滴滴滴完成签到,获得积分10
10秒前
哈哈王发布了新的文献求助10
11秒前
桐桐应助瀼瀼采纳,获得10
11秒前
Water完成签到 ,获得积分10
11秒前
上官若男应助layla采纳,获得10
12秒前
13秒前
13秒前
xuanjiawu完成签到,获得积分10
14秒前
15秒前
科目三应助Self-made采纳,获得10
17秒前
全佳伟发布了新的文献求助10
18秒前
ff发布了新的文献求助10
19秒前
tzy完成签到,获得积分10
19秒前
lin完成签到,获得积分10
19秒前
19秒前
nature2号完成签到 ,获得积分10
20秒前
20秒前
21秒前
烟花应助yyuu采纳,获得10
22秒前
Bluebulu完成签到,获得积分10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Target genes for RNAi in pest control: A comprehensive overview 600
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
HEAT TRANSFER EQUIPMENT DESIGN Advanced Study Institute Book 500
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 500
Master Curve-Auswertungen und Untersuchung des Größeneffekts für C(T)-Proben - aktuelle Erkenntnisse zur Untersuchung des Master Curve Konzepts für ferritisches Gusseisen mit Kugelgraphit bei dynamischer Beanspruchung (Projekt MCGUSS) 500
Design and Development of A CMOS Integrated Multimodal Sensor System with Carbon Nano-electrodes for Biosensor Applications 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5109272
求助须知:如何正确求助?哪些是违规求助? 4318042
关于积分的说明 13453386
捐赠科研通 4147922
什么是DOI,文献DOI怎么找? 2272930
邀请新用户注册赠送积分活动 1275085
关于科研通互助平台的介绍 1213282