已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

TFTformer: A novel transformer based model for short-term load forecasting

变压器 期限(时间) 计算机科学 可靠性工程 人工智能 工程类 电气工程 电压 物理 量子力学
作者
Ahmad Ahmad,Xun Xiao,Huadong Mo,Daoyi Dong
出处
期刊:International Journal of Electrical Power & Energy Systems [Elsevier]
卷期号:166: 110549-110549 被引量:13
标识
DOI:10.1016/j.ijepes.2025.110549
摘要

Electrical load forecasting is essential for the efficient operation and planning of power systems. Recent studies have employed Transformer models in forecasting due to their unique attention mechanisms and ability to extract correlations in data. However, these models face challenges in integrating varied data types and capturing long-term dependencies. To address these limitations, this study proposes a TFTformer, a transformer-based neural network designed to enhance the accuracy and generalisability of load forecasting models. The TFTformer incorporates transposed feature-specific embeddings for weather, time, and load data to more accurately capture their unique characteristics. A linear transformation layer post embedding improves feature representation, aligning and standardising features across sequences for improved pattern recognition. Additionally, a Temporal Convolutional Network is integrated within the Transformer’s encoder, employing causal convolutions and dilation to adapt to the sequential nature of data with an expanded receptive field. The effectiveness of the TFTformer is demonstrated through a comparative study against several state-of-the-art methods using load datasets from Belgium, New Zealand, and five Australian states. The results demonstrate that the TFTformer achieves significant MSE improvements across different locations, with over 50% improvement over most models, 42% over CARD, and 16%–17% improvement compared to iFlowformer and iReformer. Furthermore, an Analysis of Variance is conducted to evaluate the impact of each component of the TFTformer. A SHAP-based interpretability analysis, using surrogate models, is conducted to elucidate the decision-making process of TFTformer, highlighting the critical role of time factors and weather features in its predictions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
神勇金毛发布了新的文献求助10
2秒前
2秒前
2秒前
2秒前
淘宝叮咚发布了新的文献求助10
2秒前
2秒前
zkx发布了新的文献求助20
2秒前
3秒前
3秒前
在水一方应助糟糕的铁锤采纳,获得10
5秒前
淘宝叮咚发布了新的文献求助10
5秒前
5秒前
小轩完成签到,获得积分10
6秒前
香蕉觅云应助灵巧的大开采纳,获得10
6秒前
淘宝叮咚发布了新的文献求助10
6秒前
淘宝叮咚发布了新的文献求助10
7秒前
淘宝叮咚发布了新的文献求助10
7秒前
淘宝叮咚发布了新的文献求助10
7秒前
淘宝叮咚发布了新的文献求助10
7秒前
Aprilapple发布了新的文献求助10
9秒前
怡然的若山完成签到 ,获得积分10
10秒前
12秒前
王zhuo完成签到 ,获得积分10
13秒前
13秒前
15秒前
Milktea123完成签到,获得积分10
15秒前
Aprilapple完成签到,获得积分10
16秒前
17秒前
烟花应助msn00采纳,获得10
17秒前
18秒前
小米发布了新的文献求助10
18秒前
小二郎应助villain采纳,获得10
18秒前
18秒前
19秒前
曾经如南完成签到,获得积分10
19秒前
张勇涛完成签到,获得积分10
19秒前
伤心葫芦娃完成签到 ,获得积分10
20秒前
20秒前
22秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1041
Mentoring for Wellbeing in Schools 1000
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5493112
求助须知:如何正确求助?哪些是违规求助? 4591047
关于积分的说明 14433325
捐赠科研通 4523718
什么是DOI,文献DOI怎么找? 2478458
邀请新用户注册赠送积分活动 1463482
关于科研通互助平台的介绍 1436175