AlphaFold3: An Overview of Applications and Performance Insights

计算生物学 计算机科学 药物发现 蛋白质-蛋白质相互作用 系统生物学 数据科学 纳米技术 生物 生物信息学 材料科学 遗传学
作者
Marios G. Krokidis,Dimitrios E. Koumadorakis,Konstantinos Lazaros,Ouliana Ivantsik,Themis P. Exarchos,Aristidis G. Vrahatis,Sotiris Kotsiantis,Panagiotis Vlamos
出处
期刊:International Journal of Molecular Sciences [MDPI AG]
卷期号:26 (8): 3671-3671
标识
DOI:10.3390/ijms26083671
摘要

AlphaFold3, the latest release of AlphaFold developed by Google DeepMind and Isomorphic Labs, was designed to predict protein structures with remarkable accuracy. AlphaFold3 enhances our ability to model not only single protein structures but also complex biomolecular interactions, including protein–protein interactions, protein–ligand docking, and protein-nucleic acid complexes. Herein, we provide a detailed examination of AlphaFold3’s capabilities, emphasizing its applications across diverse biological fields and its effectiveness in complex biological systems. The strengths of the new AI model are also highlighted, including its ability to predict protein structures in dynamic systems, multi-chain assemblies, and complicated biomolecular complexes that were previously challenging to depict. We explore its role in advancing drug discovery, epitope prediction, and the study of disease-related mutations. Despite its significant improvements, the present review also addresses ongoing obstacles, particularly in modeling disordered regions, alternative protein folds, and multi-state conformations. The limitations and future directions of AlphaFold3 are discussed as well, with an emphasis on its potential integration with experimental techniques to further refine predictions. Lastly, the work underscores the transformative contribution of the new model to computational biology, providing new insights into molecular interactions and revolutionizing the fields of accelerated drug design and genomic research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
9iiie完成签到 ,获得积分10
1秒前
科研通AI6.1应助touka666采纳,获得10
4秒前
VLe完成签到,获得积分20
4秒前
共享精神应助蝶衣采纳,获得10
4秒前
今后应助顺利盼望采纳,获得10
6秒前
yangya完成签到,获得积分10
7秒前
天天快乐应助jeronimo采纳,获得10
7秒前
9秒前
王qc完成签到,获得积分10
10秒前
爆米花应助VLe采纳,获得10
10秒前
orixero应助鲤鱼谷秋采纳,获得10
11秒前
my完成签到,获得积分10
13秒前
sy完成签到,获得积分10
13秒前
蓝天应助string采纳,获得10
14秒前
train完成签到 ,获得积分10
14秒前
15秒前
16秒前
17秒前
安白发布了新的文献求助10
17秒前
顺利盼望发布了新的文献求助10
20秒前
linda268完成签到,获得积分10
21秒前
22秒前
23秒前
null应助lilac采纳,获得10
24秒前
24秒前
安白完成签到,获得积分10
26秒前
鲤鱼谷秋发布了新的文献求助10
26秒前
26秒前
思源应助touka666采纳,获得10
27秒前
精明悲发布了新的文献求助10
27秒前
吡咯爱成环完成签到,获得积分0
28秒前
荒林完成签到,获得积分20
28秒前
shichen完成签到 ,获得积分10
28秒前
王小明发布了新的文献求助30
29秒前
科研通AI6.1应助kawaiikid采纳,获得10
29秒前
顺利盼望完成签到,获得积分20
29秒前
kevin发布了新的文献求助10
32秒前
王文王完成签到,获得积分10
33秒前
breaddog完成签到,获得积分10
36秒前
wdw2501完成签到,获得积分20
36秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Operational Bulk Evaporation Duct Model for MORIAH Version 1.2 1200
Variants in Economic Theory 1000
Signals, Systems, and Signal Processing 880
Yangtze Reminiscences. Some Notes And Recollections Of Service With The China Navigation Company Ltd., 1925-1939 800
Discrete-Time Signals and Systems 510
Clinical Efficacy of the Hydrogel Patch Containing Loxoprofen Sodium (LX-A) on Osteoarthritis of the Knee-A Randomized, Open Label Clinical Study with Ketoprofen Patch-(Phase III Therapeutic Confirmatory Study) 410
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5842140
求助须知:如何正确求助?哪些是违规求助? 6170240
关于积分的说明 15608749
捐赠科研通 4959419
什么是DOI,文献DOI怎么找? 2673739
邀请新用户注册赠送积分活动 1618634
关于科研通互助平台的介绍 1573785