In Situ Identification of Zinc Sites as Potential-Dependent Selectivity Switch over Dual-Atom Catalysts for H2O2 Electrosynthesis

选择性 电合成 化学 催化作用 Atom(片上系统) 氧化还原 原位 无机化学 电化学 物理化学 电极 有机化学 计算机科学 嵌入式系统
作者
Qizheng An,Xupeng Qin,Xuan Sun,Xu Zhang,Yuhao Zhang,Jianglong Guo,Jingjing Jiang,Jing Zhang,Baojie Li,Yaling Jiang,Hui Zhang,Xin Chen,Yuanli Li,Kun Zheng,Weiren Cheng,Dingsheng Wang,Qinghua Liu
出处
期刊:Journal of the American Chemical Society [American Chemical Society]
卷期号:147 (13): 11465-11476 被引量:24
标识
DOI:10.1021/jacs.5c01449
摘要

Controllably breaking the activity-selectivity trade-offs in the electrocatalytic oxygen reduction reaction to produce H2O2 has long been a challenge in renewable energy technologies. Herein, by assigning the activity and selectivity requirements to two independent single-atom sites, we deliberately engineered a Co-Zn DAC for promising H2O2 electrosynthesis, from which the Co sites provided the activity response for oxygen reduction, and the Zn sites regulated the reaction selectivity toward the 2e- pathway. Through multidimensional in situ characterizations, a potential-dependent switching function of the Zn sites was revealed, which made the increase in H2O2 production at various reaction stages controllable. As a result, efficient H2O2 selectivity switching from 11.1% in the single Co atom catalyst to 94.8% in the Co-Zn DAC was realized, with a prominent turnover frequency of 2.7 s-1 among the reported H2O2-producing catalysts. Notably, a similar effect was also observed in M-Zn DACs (M = Pt, Ru, or Ni), which demonstrated the universal switcher role of the Zn sites. The real-time catalytic site behavior insights gained through this integrated experimental and theoretical study are envisioned to be valuable not only for the ORR but also for other energy catalysis reactions involving activity-selectivity trade-off issues.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我是老大应助由易梦采纳,获得10
1秒前
英俊的铭应助摔摔77呀采纳,获得30
2秒前
malenia发布了新的文献求助10
2秒前
壮观百招发布了新的文献求助10
4秒前
4秒前
量子星尘发布了新的文献求助10
5秒前
ivying0209发布了新的文献求助10
6秒前
6秒前
李健应助西早采纳,获得30
6秒前
6秒前
6秒前
量子星尘发布了新的文献求助10
8秒前
bkagyin应助呆萌的青烟采纳,获得10
8秒前
可靠的毛衣完成签到 ,获得积分10
8秒前
莉123完成签到,获得积分20
9秒前
英俊的铭应助黎日新采纳,获得10
11秒前
FashionBoy应助Xxxw采纳,获得10
12秒前
欢欢发布了新的文献求助10
12秒前
莉123发布了新的文献求助10
13秒前
上官若男应助劣根采纳,获得10
14秒前
蛋黄发布了新的文献求助10
15秒前
隐形曼青应助欢欢采纳,获得10
16秒前
16秒前
萝卜花1968发布了新的文献求助10
16秒前
FashionBoy应助CNS冲采纳,获得10
17秒前
18秒前
18秒前
happy完成签到,获得积分10
20秒前
21秒前
21秒前
科目三应助sun采纳,获得10
21秒前
21秒前
科研通AI6应助AWY采纳,获得100
21秒前
sunflower完成签到,获得积分0
21秒前
冷静的问安完成签到 ,获得积分10
22秒前
22秒前
Hello应助舒心的秋荷采纳,获得10
23秒前
黎日新发布了新的文献求助10
24秒前
景景好发布了新的文献求助10
24秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5663524
求助须知:如何正确求助?哪些是违规求助? 4850541
关于积分的说明 15104701
捐赠科研通 4821750
什么是DOI,文献DOI怎么找? 2580972
邀请新用户注册赠送积分活动 1535170
关于科研通互助平台的介绍 1493501