刺
微球
免疫疗法
材料科学
Boosting(机器学习)
植入
纳米技术
生物医学工程
医学
免疫系统
免疫学
外科
计算机科学
工程类
化学工程
机器学习
航空航天工程
作者
Shicheng Huo,Yifei Liu,Zhenjiang Zech Xu,Bing Xiao,Cai Chang,Changgui Shi,Xuesong Liu,Guohua Xu
出处
期刊:ACS Nano
[American Chemical Society]
日期:2025-04-24
标识
DOI:10.1021/acsnano.4c16606
摘要
Implant-associated infections (IAIs) represent the primary cause of prosthetic implant failure. Bacterial biofilms hinder the host's immune response, creating ″immune cold zones.″ ″Immune activation therapy″ presents a viable strategy for addressing IAIs. Nonetheless, focusing solely on regulating innate immune cells like macrophages falls short for effective antibiofilm outcomes. Herein, a multifunctional antimicrobial system capable of utilizing ultrasound (US)-induced tandem catalysis and activating innate and adaptive antimicrobial immune responses is proposed. The integration of piezoelectric barium titanate with STING plasmids both encapsulated in liposomes and embedded in hydrogel microspheres. US activation generates reactive oxygen species, effectively destroying biofilms and subsequently exposing bacterial antigens. US can destroy liposomes and release STING plasmids, thereby activating the cGAS-STING pathway and triggering antimicrobial innate immunity. Additionally, it can also induce DC maturation, enhance bacterial antigen presentation, alleviate immunosuppression, and boost adaptive immunity. This study proposes a promising strategy combining antimicrobial and immunotherapy, offering an alternative to antibiotics for IAI treatment.
科研通智能强力驱动
Strongly Powered by AbleSci AI