Climatic and seismic data-driven deep learning model for earthquake magnitude prediction

震级(天文学) 诱发地震 地震预报 地质学 最大震级 地震学 均方误差 统计 数学 物理 天文
作者
Bikash Sadhukhan,Shayak Chakraborty,Somenath Mukherjee,Raj Kumar Samanta
出处
期刊:Frontiers in Earth Science [Frontiers Media]
卷期号:11 被引量:7
标识
DOI:10.3389/feart.2023.1082832
摘要

The effects of global warming are felt not only in the Earth’s climate but also in the geology of the planet. Modest variations in stress and pore-fluid pressure brought on by temperature variations, precipitation, air pressure, and snow coverage are hypothesized to influence seismicity on local and regional scales. Earthquakes can be anticipated by intelligently evaluating historical climatic datasets and earthquake catalogs that have been collected all over the world. This study attempts to predict the magnitude of the next probable earthquake by evaluating climate data along with eight mathematically calculated seismic parameters. Global temperature has been selected as the only climatic variable for this research, as it substantially affects the planet’s ecosystem and civilization. Three popular deep neural network models, namely, long short-term memory (LSTM), bidirectional long short-term memory (Bi-LSTM), and transformer models, were used to predict the magnitude of the next earthquakes in three seismic regions: Japan, Indonesia, and the Hindu-Kush Karakoram Himalayan (HKKH) region. Several well-known metrics, such as the mean absolute error (MAE), mean squared error (MSE), log-cosh loss, and mean squared logarithmic error (MSLE), have been used to analyse these models. All models eventually settle on a small value for these cost functions, demonstrating the accuracy of these models in predicting earthquake magnitudes. These approaches produce significant and encouraging results when used to predict earthquake magnitude at diverse places, opening the way for the ultimate robust prediction mechanism that has not yet been created.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhangcz完成签到,获得积分10
刚刚
刚刚
养不熟的野猫完成签到,获得积分10
1秒前
简单以蓝发布了新的文献求助10
2秒前
Rick完成签到,获得积分10
2秒前
haha发布了新的文献求助10
2秒前
甜甜球完成签到,获得积分10
3秒前
独特的易形完成签到,获得积分10
3秒前
3秒前
今后应助一个小太阳鸭采纳,获得10
4秒前
奶糖喵发布了新的文献求助10
6秒前
waqlzq完成签到,获得积分10
7秒前
7秒前
8秒前
10秒前
11秒前
Ryan给Ryan的求助进行了留言
13秒前
Slkled完成签到 ,获得积分10
13秒前
13秒前
13秒前
酷波er应助momomi采纳,获得10
14秒前
15秒前
15秒前
整齐映真发布了新的文献求助10
15秒前
隐形曼青应助RaynorHank采纳,获得10
15秒前
15秒前
linlin发布了新的文献求助10
15秒前
SYLH应助灵巧的导师采纳,获得10
16秒前
17秒前
CodeCraft应助neverland采纳,获得10
17秒前
一周六次探花郎完成签到,获得积分20
17秒前
幽默孤容发布了新的文献求助10
18秒前
19秒前
19秒前
奋斗涵雁发布了新的文献求助10
20秒前
小Y发布了新的文献求助10
20秒前
奋斗夏烟发布了新的文献求助10
21秒前
科研狗完成签到,获得积分10
21秒前
林七七发布了新的文献求助10
23秒前
情怀应助斯文的毛豆采纳,获得10
23秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Handbook of Experimental Social Psychology 500
The Martian climate revisited: atmosphere and environment of a desert planet 500
建国初期十七年翻译活动的实证研究. 建国初期十七年翻译活动的实证研究 400
Transnational East Asian Studies 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3846452
求助须知:如何正确求助?哪些是违规求助? 3388937
关于积分的说明 10555074
捐赠科研通 3109328
什么是DOI,文献DOI怎么找? 1713694
邀请新用户注册赠送积分活动 824842
科研通“疑难数据库(出版商)”最低求助积分说明 775068