Climatic and seismic data-driven deep learning model for earthquake magnitude prediction

震级(天文学) 诱发地震 地震预报 地质学 最大震级 地震学 均方误差 统计 数学 天文 物理
作者
Bikash Sadhukhan,Shayak Chakraborty,Somenath Mukherjee,Raj Kumar Samanta
出处
期刊:Frontiers in Earth Science [Frontiers Media SA]
卷期号:11 被引量:7
标识
DOI:10.3389/feart.2023.1082832
摘要

The effects of global warming are felt not only in the Earth’s climate but also in the geology of the planet. Modest variations in stress and pore-fluid pressure brought on by temperature variations, precipitation, air pressure, and snow coverage are hypothesized to influence seismicity on local and regional scales. Earthquakes can be anticipated by intelligently evaluating historical climatic datasets and earthquake catalogs that have been collected all over the world. This study attempts to predict the magnitude of the next probable earthquake by evaluating climate data along with eight mathematically calculated seismic parameters. Global temperature has been selected as the only climatic variable for this research, as it substantially affects the planet’s ecosystem and civilization. Three popular deep neural network models, namely, long short-term memory (LSTM), bidirectional long short-term memory (Bi-LSTM), and transformer models, were used to predict the magnitude of the next earthquakes in three seismic regions: Japan, Indonesia, and the Hindu-Kush Karakoram Himalayan (HKKH) region. Several well-known metrics, such as the mean absolute error (MAE), mean squared error (MSE), log-cosh loss, and mean squared logarithmic error (MSLE), have been used to analyse these models. All models eventually settle on a small value for these cost functions, demonstrating the accuracy of these models in predicting earthquake magnitudes. These approaches produce significant and encouraging results when used to predict earthquake magnitude at diverse places, opening the way for the ultimate robust prediction mechanism that has not yet been created.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
上官若男应助Vivian采纳,获得10
1秒前
XIAOWANG发布了新的文献求助20
1秒前
3秒前
NexusExplorer应助memory采纳,获得10
6秒前
lx123发布了新的文献求助10
6秒前
6秒前
魔幻柜子发布了新的文献求助30
8秒前
默默发布了新的文献求助10
8秒前
务实蜻蜓发布了新的文献求助10
8秒前
974完成签到,获得积分10
9秒前
9秒前
lignin发布了新的文献求助10
9秒前
王辰宁完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助10
11秒前
aloopp驳回了今后应助
11秒前
无花果应助Eon采纳,获得10
11秒前
Lulululuying发布了新的文献求助10
12秒前
斯文败类应助MIranda采纳,获得10
13秒前
屿溡完成签到,获得积分10
14秒前
量子星尘发布了新的文献求助10
14秒前
领导范儿应助11111555采纳,获得10
15秒前
小二郎应助11111555采纳,获得10
15秒前
16秒前
货哈货哈完成签到,获得积分10
17秒前
18秒前
pw完成签到 ,获得积分10
19秒前
领导范儿应助上好佳采纳,获得10
19秒前
19秒前
20秒前
20秒前
Lulululuying完成签到,获得积分10
21秒前
全鑫发布了新的文献求助10
22秒前
屿溡发布了新的文献求助10
23秒前
曾业辉发布了新的文献求助10
23秒前
11111555发布了新的文献求助10
24秒前
知性的夏之完成签到 ,获得积分10
24秒前
量子星尘发布了新的文献求助10
24秒前
wearelulu完成签到,获得积分10
24秒前
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Agyptische Geschichte der 21.30. Dynastie 2000
Variants in Economic Theory 1000
Global Ingredients & Formulations Guide 2014, Hardcover 1000
Research for Social Workers 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5817867
求助须知:如何正确求助?哪些是违规求助? 5950550
关于积分的说明 15548774
捐赠科研通 4940138
什么是DOI,文献DOI怎么找? 2660776
邀请新用户注册赠送积分活动 1607009
关于科研通互助平台的介绍 1561998